Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Hybrid Gene Mapping Approach Yields Reference Quality Results

By LabMedica International staff writers
Posted on 15 Jul 2015
A team of genomics researchers from the USA and Europe have developed a new approach for describing nearly complete genomes by combining high-throughput DNA sequencing with genome mapping techniques.

Conventional next-generation sequencing (NGS) techniques are able to accurately detect certain types of variation, such as single nucleotide variants and small insertions or deletions, but miss many large or complex forms of genomic variation that are associated with human disease. More...


To overcome the inherent limitations of existing NGS methods, investigators at the Icahn School of Medicine at Mount Sinai (New York, NY, USA), several other American research institutions, and the European Molecular Biology Laboratory (Hamburg, Germany) combined two single molecule approaches. These were the long read sequencing method from Pacific Biosciences (Menlo Park, CA, USA) and Nanochannel Array and Irys reader technology from BioNano Genomics (San Diego, CA, USA). Pacific Biosciences sequencing enables reads exceeding 10 kilobases in length, which can directly resolve and phase complex forms of variation. The NanoChannel Array method confines and linearizes DNA molecules up to megabases in length to provide high-resolution genome maps.

The two techniques were combined into a hybrid approach that was used to analyze the NA12878 diploid genome, a well-sequenced specimen that is included in the 1000 Genomes project and is often used for benchmarking new techniques.

The investigators reported in the June 29, 2015, online edition of the journal Nature Methods that the hybrid assembly method markedly improved upon the contiguity observed from traditional shotgun sequencing approaches. They were able to identify complex structural variants (SVs) missed by other high-throughput approaches. In addition, they phased both single-nucleotide variants and SVs, generating haplotypes with over 99% consistency with previous trio-based studies.

“We created a high-throughput strategy that builds highly contiguous de novo genomes without the need for complex jumping libraries or targeted approaches. This strategy, in some cases, automatically resolved complete arms of chromosomes,” said senior author Dr. Ali Bashir, assistant professor of genetics and genomics at the Icahn School of Medicine. “While we focused this study on a human genome, the method can be applied to any new genome, including those with high genomic complexity, such as plants, that have been extremely challenging to study.”

“The study revealed an unprecedented view of genomic complexity, in many cases identifying regions overlooked by conventional sequencing or further refining previously known genetic variant classes,” said contributing author Dr. Jan Korbel, group leader at the European Molecular Biology Laboratory.

Related Links:

Icahn School of Medicine at Mount Sinai
European Molecular Biology Laboratory
BioNano Genomics 



Gold Member
Serological Pipets
INTEGRA Serological Pipets
Collection and Transport System
PurSafe Plus®
New
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
New
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Over 100 new epigenetic biomarkers may help predict cardiovascular disease risk (Photo courtesy of 123RF)

Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk

Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.