We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Big Data’s Direct Coupling Analysis Reveals Clues About Molecular Protease Machines

By LabMedica International staff writers
Posted on 07 Apr 2014
Researchers have merged genetic and structural data in a Big Data attempt to solve one of the most fascinating mysteries in biology: how proteins perform the regulatory processes in cells upon which all life depends.

The daily life of a motor molecule involves eating and excreting damaged proteins and converting them into harmless peptides ready for disposal. More...
Without these garbage bins, the Escherichia coli bacteria they attend to would die. Biophysicists from Rice University (Atlanta, GA, USA) used a protease called an FtsH-AAA hexameric peptidase as a model to examine calculations that combine genetic and structural data.

Dr. José Onuchic, a biologic physicist, and postdoctoral researchers Drs. Biman Jana and Faruck Morcos published their new findings March 2014 in the Royal Society of Chemistry journal, Physical Chemistry Chemical Physics. The study is the first successful attempt to feed data through their computational technique to describe the complex activity of a large molecular machine formed by proteins. Ultimately, understanding these machines will help researchers design drugs to treat diseases including cancer, the focus of Rice’s Center for Theoretical Biological Physics.

“Structural techniques like X-ray crystallography and nuclear magnetic resonance have worked quite well to help us understand how smaller proteins function,” Dr. Onuchic stated. X-rays only take snapshots of constantly moving proteins, he said, “but functional proteins, big protein complexes and molecular machines have multiple conformations. Computational models are also useful, but to understand the full dynamics of these large proteins, where a lot of the interesting biology takes place, we have to supplement them with more information.”

That information comes from direct coupling analysis (DCA), a statistical tool developed by Drs. Morcos and Onuchic with colleagues at the University of California, San Diego (UCSD; USA), and the Pierre and Marie Curie University (Paris, France). DCA looks at the genetic roots of proteins to see how amino acids—the “beads” in the unfolded protein strands—co-evolved to influence the way a protein folds. Each bead carries an inherent energy that contributes to the strand’s unique energy topography, which decrees how it folds into its functional state.

Proteins, even after they fold, are in constant motion, acting as catalysts for countless bodily functions. They can combine into larger molecular machines that grab other molecules, “walk” their payloads within a cell or cause muscles to contract. One such biomachine is FtsH (filamentous temperature-sensitive H), a membrane-bound molecule in E. coli made of six protein copies that form two connected hexagonal rings. The molecule attracts and degrades misfolded proteins and other cellular waste pulling them in through one ring, which closes similar to a shutter of a camera and traps the proteins. They are sliced apart as they leave through the other ring.

Through molecular simulations using structure-based models and the discovery using DCA of probable couplings in the genetic source of the proteins, the researchers found evidence to support the hypothesis of a “paddling” process in the molecule that Dr. Morcos described as a collapse of the two rings once waste found its way inside. “First the ring pore closes to grab the protein; then the molecule flattens,” he said. “Then when the motor is flat, the rings open to release the peptides and the molecule expands again to restart the cycle.”

Key to the success of DCA is the understanding that amino acid mutations represent contacts that co-evolve for specific reasons. The contact maps generated by DCA can reveal previously unknown aspects to model transitions between functional states, such as the paddling in FtsH, Dr. Onuchic said. “We can look at the evolutionary tree of these proteins and see which pairs of amino acids changed together. We then assume these are contacts,” he said. “Through DCA, Faruck uses a lot of physics to understand when two amino acids can act directly or indirectly, and separate the two. Then we predict how coupled they are, and the higher the probability, the more evidence that these are real contacts.”

DCA would do little without the deluge of data available since the ability to scan entire genomes became possible, and even routine, in recent years. Recent developments in the 100-year-old skill of crystallography are making better structure-based models available as well. “Even if the mathematical framework was ready and we had crystallographic data for this motor protein in the 1990s, there weren’t enough sequences available until the 2000s,” Dr. Morcos said. “Now we have all the pieces converging.”

Dr. Morcos noted that by better determining essential motor proteins in bacteria will be important as researchers begin to apply DCA to optimize human healthcare. “For us, the most exciting part is that we’re now able to tackle really big systems,” he said.

Related Links:

Rice University
University of California, San Diego
Pierre and Marie Curie University



New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Serological Pipet Controller
PIPETBOY GENIUS
New
Clostridium Difficile Toxin A+B Combo Card Test
CerTest Clostridium Difficile Toxin A+B
New
Specimen Radiography System
TrueView 200 Pro
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: New research brings hope for improved early detection of pancreatic cancer (Photo courtesy of Adobe Stock)

New Biomarker Panel to Enable Early Detection of Pancreatic Cancer

Pancreatic cancer (PC) has one of the worst prognoses globally, with only 13% of diagnosed patients surviving for five years or more. In Ireland, there are about 900 cases of pancreatic cancer annually,... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.