We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Discovery Enables Autoimmune Disease Treatment Strategy

By LabMedica International staff writers
Posted on 18 Sep 2013
Scientists have found a new way to manipulate the immune system that may keep it from attacking the body’s own molecules in autoimmune diseases such as rheumatoid arthritis, type 1 diabetes, and multiple sclerosis.

The researchers, led by immunologist Mark Anderson, MD, PhD, a professor with the University of California, San Francisco (UCSF; USA) Diabetes Center, have discovered a unique type of immune cell called an extrathymic Aire-expressing cell (eTAC), which is found to suppress immune responses. More...
Dr. Anderson’s research colleagues discovered that eTACs reside in lymph nodes and spleen in both humans and mice, and determined that they could be manipulated to block the destruction of the pancreas in a mouse model of diabetes. The study’s findings were published in the September 2013 issue of the journal Immunity.

Using green fluorescent protein (GFP) to illuminate a critical regulatory protein called AIRE (autoimmune regulator-1), Dr. Anderson’s research team searched out the rare eTACs and their role in a phenomenon known as peripheral tolerance, which helps prevent autoimmune disease throughout the body.

These immune cells are of a type known as dendritic cells, which comprise less than 3% of the cells in the immune system. ETAC cells account for a small fraction of all dendritic cells, according to the researchers. Dendritic cells already have been the basis of new cell therapies to treat cancer. These therapies, which include treatments assessed in UCSF clinical trials, have been used to induce dendritic cells to generate a complementary class of immune cells, called T cells. Treatment causes the T cells to target cancer cells, which, in spite of being abnormal, would not otherwise be exposed to forceful attack in the same way as foreign microbial intruders.

However, eTAC cells have the opposite effect. Instead of triggering T cells to fight, eTACs offset the overactive immune response in autoimmune diseases. Anderson's team took advantage of this property to demonstrate that eTACs could prevent autoimmune diabetes in mice.

By displaying “self” molecules to T cells that target them, and totally inactivating these T cells, eTACs help the immune system tolerate the molecules naturally present within us, according to Dr. Anderson. “The mouse model we are working with involves using T cells that normally attack the islet cells of the pancreas, specifically by recognizing a molecule called chromagranin A that is present on islet cells,” Dr. Anderson said. “But if the eTACs can get to the T cells first and display chromagranin A, they can prevent T cells from attacking the islets.”

Dr. Anderson is trying to exploit eTACs in a therapeutic way by determining how to grow them in large numbers outside the body. “We need to figure out how to grow a lot of these cells, to load them up with whatever molecule it is that we want to induce tolerance to, and then to load them back into a patient,” he said. “Such a strategy could help selectively shut down an unwanted immune response, such as the anti-islet immune response in type 1 diabetes.”

Dendritic cells work with T cells a bit like an investigator working with a bloodhound. Dendritic cells present not an article of clothing, but rather a specific molecule. If the molecule displayed by the dendritic cell matches the one the T cell was born to target, then that T cell would be triggered to increase its numbers and to attack cells or tissues where the molecule is present.

When the interaction is between eTACs and T cells, however, the targeted T cell instead is turned off forever, and never seeks its molecular target, Dr. Anderson noted, The first signal required for activation of a T cell is the display and recognition of the targeted molecule. But a second signal also is required, and eTACs are unable to deliver it, Dr. Anderson and colleagues discovered. They lack the molecular arms (molecules called B7-1 and B7-2) needed to communicate the activating message, which are present on other dendritic cells.

The eTACs arise in the bone marrow from adult stem cells that generate the entire blood system, including immune cells, according to Dr. Anderson. Compared to using pluripotent stem cells of nearly unlimited potential, it should be easier to determine how to guide the development of eTACs from bone marrow stem cells, he said.

Dr. Anderson’s search for an immune cell that in activates T cells began with the AIRE protein. He helped discover its function more than 10 years ago for specialized cells in the thymus. In the thymus, AIRE plays a major role in central tolerance, the occurrence whereby immune cells in thymus learn to tolerate the body’s naturally occurring molecules shortly after birth. Peripheral tolerance complements central tolerance, and its failure frequently is responsible for autoimmune diseases that arise well after birth.

Many UCSF faculty members are experts on immune tolerance and autoimmune disease. Another approach for exploiting the immune system to fight autoimmune disease, developed at UCSF, has already has led to a new therapy being assessed in a clinical trial for type 1 diabetes. The treatment is based on a type of T cell called the regulatory T cell, which plays a natural role in terminating immune responses when infection ends.

Related Links:

University of California, San Francisco




Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Collection and Transport System
PurSafe Plus®
Human Estradiol Assay
Human Estradiol CLIA Kit
New
Gold Member
Automatic CLIA Analyzer
Shine i9000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Urine samples can indicate lupus nephritis without the need for repeat and painful renal biopsies (Photo courtesy of Shutterstock)

Urine Test Could Replace Painful Kidney Biopsies for Lupus Patients

Lupus is an autoimmune disorder that causes the immune system to attack the body’s own tissues and organs. Among the five million people living with lupus globally, nearly half develop lupus nephritis,... Read more

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.