We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Gene Therapy Reprograms Scar Tissue in Damaged Hearts into Healthy Heart Muscle

By LabMedica International staff writers
Posted on 15 Jan 2013
A combination of three genes has been found to have the ability to reprogram cells in the scars caused by heart attacks into functioning muscle cells, and the addition of a gene that triggers the growth of blood vessels enhances that effect.

“The idea of reprogramming scar tissue in the heart into functioning heart muscle was exciting,” said Dr. More...
Todd K. Rosengart, chair of the Michael E. DeBakey department of surgery at Stony Brook University Medical Center (BCM; http://stonybrookmedicine.edu) and the report’s corresponding author. “The theory is that if you have a big heart attack, your doctor can just inject these three genes into the scar tissue during surgery and change it back into heart muscle. However, in these animal studies, we found that even the effect is enhanced when combined with the VEGF [the vascular endothelial growth factor] gene.”

“This experiment is a proof of principle,” said Dr. Ronald G. Crystal, chairman and professor of genetic medicine at Weill Cornell Medical College (New York, NY, USA) and an innovator of gene therapy, who played an important role in the research. “Now we need to go further to understand the activity of these genes and determine if they are effective in even larger hearts.”

Blood supply is blocked off to the heart during a myocardial infarction, which results in the death of heart muscle. The damage leaves behind a scar and a weakened heart. Ultimately, most individuals who have had serious heart attacks will develop heart failure.

Changing the scar tissue into heart muscle would strengthen the heart. To achieve this, during surgery, Dr. Rosengart and his colleagues transferred three forms of the VEGF gene that enhances blood vessel growth or an inactive material (both attached to a gene vector) into the hearts of rats. Three weeks later, the rats received either Gata4, Mef 2c, and Tbx5 (the combination of transcription factor genes called GMT) or an inactive material.

The GMT genes alone reduced the amount of scar tissue by half compared to animals that did not receive the genes, and there were more heart muscle cells in the animals that were treated with GMT. The hearts of animals that received GMT alone also worked better as defined by ejection fraction than those who had not received genes.

The hearts of the animals that had received both the GMT and the VEGF gene transfers had an ejection fraction four times greater than that of the animals that had received only the GMT transfer. Dr. Rosengart stressed that more research needs to be done to validate that the effect of the VEGF is real, but it has real potential as part of a new treatment for heart attack that would minimize heart damage. “We have shown both that GMT can effect change that enhances the activity of the heart and that the VEGF gene is effective in improving heart function even more,” said Dr. Crystal.

The project started with the idea of induced pluripotent stem cells—reprograming mature specialized cells into stem cells that are immature and can differentiate into different specific cells needed in the body. Dr. Shinya Yamanaka and Sir John B. Gurdon received the Nobel Prize in Medicine and Physiology for their work toward this goal this year.

However, use of induced pluripotent stem cells has the potential to cause tumors. To avoid this, researchers used the GMT cocktail to reprogram the scar cells into cardiomyocytes in the living animals. Dr. Rosengart and his colleagues are now going a step farther—stimulating the generation of new blood vessels to provide circulation to the new cells.

Related Links:
Stony Brook University Medical Center
Weill Cornell Medical College


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Serological Pipet Controller
PIPETBOY GENIUS
New
Hand-Held Immunofluorescence Analyzer
WS-Si1500
New
DNA/RNA Extraction/Purification Kit
Nucleic Acid Extraction or Purification Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: Brain biomarkers of Alzheimer\'s disease can be detected as early as middle age (Photo courtesy of University of Shutterstock)

Blood-Based Biomarkers Could Detect Alzheimer's as Early as Middle Age

As the global population ages, Alzheimer's disease and other dementing diseases are becoming more prevalent. The disease processes leading to Alzheimer's symptoms can begin years or even decades before... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: Micrograph showing the distribution of misfolded proteins in myeloma cells (Photo courtesy of Helmholtz Munich)

Novel Method Tracks Cancer Treatment in Cells Without Dyes or Labels

Multiple myeloma is a blood cancer that affects plasma cells in the bone marrow, leading to abnormal protein production, weakened immunity, and organ damage. Traditional methods for evaluating myeloma... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.