We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Time-Dependent Molecular Switch Controls Axon-Spreading in the Developing Brain

By LabMedica International staff writers
Posted on 05 Dec 2012
Research on the formation of the nervous system has revealed a time-dependent molecular switch that controls the spread of axons in the embryonic brain and the establishment of functional neural circuits.

Investigators at the Montreal Neurological Institute (Canada) examined the factors responsible for correct spreading of axons in the developing brain. More...
They reported in the November 21, 2012, online edition of the journal Neuron that the protein Sonic Hedgehog (Shh) attracted axons in the developing spinal cord ventrally toward the floorplate. However, after crossing the floorplate, these axons switched their response to Shh from attraction to repulsion, so that they were repelled anteriorly by a posterior-high/anterior-low Shh gradient along the longitudinal axis.

The activity of Shh was found to be controlled by a group of proteins known as 14-3-3. These proteins comprise a family of conserved regulatory molecules expressed in all eukaryotic cells. The name 14-3-3 refers to the particular elution and migration pattern of these proteins on DEAE-cellulose chromatography and starch-gel electrophoresis. The 14-3-3 proteins eluted in the 14th fraction of bovine brain homogenate and were found on positions 3.3 of subsequent electrophoresis. 14-3-3 proteins have the ability to bind a multitude of functionally diverse signaling proteins, including kinases, phosphatases, and transmembrane receptors. More than 100 signaling proteins have been reported as 14-3-3 ligands.

The investigators showed that inhibition of 14-3-3 protein activity converted Shh-mediated repulsion of aged dissociated neurons to attraction and prevented the correct anterior turn. Conversely, overexpression of 14-3-3 proteins was sufficient to drive the switch from Shh-mediated attraction to repulsion both in vitro and in vivo.

“To properly form neural circuits, developing axons follow external signals to reach the right targets,” said senior author Dr. Frédéric Charron, professor of medicine at the Montreal Neurological Institute. “We discovered that nerve cells also have an internal clock, which changes their response to external signals as they develop over time.”

Related Links:
Montreal Neurological Institute



Gold Member
Serological Pipets
INTEGRA Serological Pipets
Collection and Transport System
PurSafe Plus®
New
Human Estradiol Assay
Human Estradiol CLIA Kit
New
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: Erythrocyte Sedimentation Rate Sample Stability (Photo courtesy of ALCOR Scientific)

ESR Testing Breakthrough Extends Blood Sample Stability from 4 to 28 Hours

Erythrocyte sedimentation rate (ESR) is one of the most widely ordered blood tests worldwide, helping clinicians detect and monitor infections, autoimmune conditions, cancers, and other diseases.... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.