We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




High-Throughput siRNA Screening Identifies Drug Targets in MYC-driven Cancers

By LabMedica International staff writers
Posted on 04 Jun 2012
A sophisticated high-throughput screening technique was used to search for genes able to block the activity of an oncogene that produces a protein that had traditionally been considered “undruggable” due to its lack of binding sites for low molecular weight inhibitors.

Investigators at the Fred Hutchinson Cancer Research Center (Seattle, WA, USA) focused their attention on the gene MYC, which is a strong protooncogene that it is very often found to be upregulated in many types of cancers. More...
The Myc protein encoded by this gene is a transcription factor that activates expression of a great number of genes through binding on consensus sequences (Enhancer Box sequences (E-boxes)) and recruiting histone acetyltransferases (HATs). It can also act as a transcriptional repressor. By binding Miz-1 transcription factor and displacing the p300 coactivator, it inhibits expression of Miz-1 target genes. Myc is activated upon various mitogenic signals such as Wnt, Shh, and EGF (via the MAPK/ERK pathway). By modifying the expression of its target genes, MYC activation results in numerous biological effects. The protein encoded by MYC has been found to be highly resistant to chemotherapy mainly because it lacks efficient binding sites for drug compounds.

A paper published in the May 23, 2012, online edition of the journal Proceedings of the National Academy of Sciences of the USA described the use of high-throughput siRNA (small interfering RNA) screening to evaluate a library of 3.300 druggable genes for their possible effect on MYC. Of 49 genes selected for follow-up, 48 were confirmed by independent retesting, and approximately one-third selectively induced accumulation of cellular DNA damage. In addition, genes involved in histone acetylation and transcriptional elongation were identified, indicating that the screen had revealed known MYC-associated pathways.

For in vivo validation in a nude mouse xenograft model, the investigators selected the enzyme CSNK1e, a kinase whose expression correlated with MYC amplification in neuroblastoma (an established MYC-driven cancer). Using RNAi and available small-molecule inhibitors, they confirmed that inhibition of CSNK1e halted growth of MYC-amplified neuroblastoma xenografts.

An inhibitor for CSNK1e already exists: a compound that originally was developed to modulate sleep cycles. “It had been sitting on a shelf for years, like the thousands of other “orphan” drugs that are abandoned when they prove ineffective for their intended use,” said senior author Dr. Carla Grandori, professor of human biology at the Fred Hutchinson Cancer Research Center. “Fortunately, MYC-driven cancer cells have an Achilles heel. Their rapid growth and division damages their DNA, and they rely on other genes to repair that damage. Disabling those genes can cripple the cancer’s ability to grow.”

“It is possible that the next great breakthrough in cancer therapy is already out there, sitting on a shelf, hiding in plain view,” said Dr. Grandori. “We have barely scratched the surface. These techniques are incredibly powerful, but they are new and not widely known. There are thousands of researchers who could apply this approach to their work. In the right hands, it could speed up the development of new cancer therapies a thousand-fold.”

Related Links:

Fred Hutchinson Cancer Research Center




Gold Member
Troponin T QC
Troponin T Quality Control
Serological Pipet Controller
PIPETBOY GENIUS
New
Specimen Radiography System
TrueView 200 Pro
New
Rapid Test Reader
DIA5000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: New research brings hope for improved early detection of pancreatic cancer (Photo courtesy of Adobe Stock)

New Biomarker Panel to Enable Early Detection of Pancreatic Cancer

Pancreatic cancer (PC) has one of the worst prognoses globally, with only 13% of diagnosed patients surviving for five years or more. In Ireland, there are about 900 cases of pancreatic cancer annually,... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.