We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




New Method Simplifies Preparation of Tumor Genomic DNA Libraries

By LabMedica International staff writers
Posted on 28 Oct 2019
Print article
Image: A diagram of construction of a genomic library (Photo courtesy of Wikimedia Commons).
Image: A diagram of construction of a genomic library (Photo courtesy of Wikimedia Commons).
A method has been described that simplifies preparation of tumor genomic DNA libraries by employing restriction enzymes and in vitro transcription to barcode and amplify genomic DNA prior to library construction.

In general, a genomic library is the collection of the total genomic DNA from a single organism. The DNA is stored in a population of identical vectors, each containing a different insert of DNA. In order to construct a genomic library, the organism's DNA is extracted from cells and then digested with a restriction enzyme to cut the DNA into fragments of a specific size. The fragments are then inserted into the vector using DNA ligase.

Copy number alterations or variations are common features of cancer cells. Within the same tumor, cells belonging to different anatomical areas of the tumor may carry different variations. Tumors with many variations are typically very aggressive and tend to be resistant to treatment.

Current strategies for massively parallel sequencing of tumor genomic DNA mainly rely on library indexing in the final steps of library preparation. This procedure is costly and time-consuming, since a library must be generated separately for each sample. Furthermore, whole-genome amplification requires intact DNA and thus is problematic in fixed tissue samples, in particular formalin-fixed, paraffin-embedded (FFPE) specimens, which still represent a cornerstone in pathology.

To overcome these limitations, investigators at the Karolinska Institutet (Solna, Sweden) developed a method, which they named CUTseq, that combined restriction endonucleases with in vitro transcription (IVT) to construct highly multiplexed DNA libraries for reduced representation genome sequencing of multiple samples in parallel.

The investigators showed that CUTseq could be used to barcode gDNA extracted from both non-fixed and fixed samples, including old archival FFPE tissue sections. They benchmarked CUTseq by comparing it with a widely used method of DNA library preparation and demonstrated that CUTseq could be used for reduced representation genome and exome sequencing, enabling reproducible DNA copy number profiling and single-nucleotide variant (SNV) calling in both cell and low-input FFPE tissue samples.

The investigators demonstrated an application of CUTseq for assessing genetic differences within tumors by profiling DNA copy number levels in multiple small regions of individual FFPE tumor sections. Finally, they described a workflow for rapid and cost-effective preparation of highly multiplexed CUTseq libraries, which could be applied in the context of high-throughput genetic screens and for cell line authentication.

"I expect that CUTseq will find many useful applications in cancer diagnostics," said senior author Dr. Nicola Crosetto, senior researcher in medical biochemistry and biophysics at the Karolinska Institutet. "Multi-region tumor sequencing is going to be increasingly used in the diagnostic setting, in order to identify patients with highly heterogeneous tumors that need to be treated more aggressively. I believe that our method can play a leading role here."

The study was published in the October 18, 2019, online edition of the journal Nature Communications.

Related Links:
Karolinska Institutet

Gold Supplier
SARS-CoV2 Antigen Rapid Test
SARS-CoV2 Antigen Rapid Test
New
COVID-19 Severity Algorithm
Atellica COVID-19 Severity Algorithm
New
Gold Supplier
Fully Automated ELISA Workstation
EUROLabWorkstation ELISA
New
Decapping, Recapping, Sorting Solution
DC/RC 900 Flex

Print article

Channels

Clinical Chem.

view channel
Image: Simoa is an ultra-sensitive immunoassay technology that allow detection of proteins and nucleic acids at lowest possible levels (Photo courtesy of Quanterix)

Plasma Amyloid-β 42/40 Assays Compared in Alzheimer Disease

Blood-based tests for brain amyloid-β (Aβ) pathology are needed for widespread implementation of Alzheimer disease (AD) biomarkers in clinical care and to facilitate patient screening and monitoring of... Read more

Molecular Diagnostics

view channel
Image: The QuikRead go iFOBT is an immunochemical fecal immunochemical test for detection and quantification of human hemoglobin in feces in case of suspected bleeding from the lower gastrointestinal tract (Photo courtesy of Aidian)

Fecal Immunochemical Tubes Sourced to Analyze Gut Microbiome for CRC

Colorectal cancer (CRC) is a challenging public health problem which successful treatment depends on the stage at diagnosis. Recently, CRC-specific microbiome signatures have been proposed as a marker... Read more

Hematology

view channel
Image: Bone marrow aspirate from a patient with peripheral T-cell lymphoma (Photo courtesy of Peter Maslak, MD)

Mutation Analysis Links Angioimmunoblastic T-Cell Lymphoma to Clonal Hematopoiesis

Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of lymphoid tumors and encompass peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS), angioimmunoblastic T-cell lymphoma (AITL), and... Read more

Immunology

view channel
Image: The BD LSRFortessa X-20 Cell Analyzer can be configured with up to five lasers to detect up to 20 parameters simultaneously to support ever increasing demands in multicolor flow cytometry (Photo courtesy of BD Biosciences)

Highly Multiplexed Cell Surface Protein Analyzed Via Flow Cytometry

Modern immunologic studies increasingly requires high-dimensional analyses to understand the complex milieu of cell types that comprise the tissue microenvironments of disease. One of the cornerstones... Read more

Pathology

view channel
Image: Characteristic bronchoalveolar lavage findings of diffuse alveolar hemorrhage (Photo courtesy of Peter C. Bauer, MD)

Bronchoalveolar Lavage Cell Pattern Determined for Diffuse Alveolar Hemorrhage

Diffuse alveolar hemorrhage (DAH) is a clinicopathological syndrome that describes the accumulation of intra-alveolar red blood cells originating from the alveolar capillaries. DAH can induce severe respiratory... Read more

Industry

view channel
Image: GastroPanel Quick Test (Photo courtesy of Biohit Healthcare)

Biohit’s Innovative GastroPanel Quick Test Receives CE Mark

Biohit Healthcare’s (Helsinki, Finland) GastroPanel Quick Test, the latest innovation in its unique GastroPanel product family, is now CE marked. The GastroPanel Quick Test is intended for diagnosing... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.