We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




AI Method Predicts Overall Survival Rate of Prostate Cancer Patients

By LabMedica International staff writers
Posted on 04 Jun 2025

Prostate adenocarcinoma (PAC) accounts for 99% of prostate cancer diagnoses and is the second most common cancer in men globally after skin cancer. More...

With more than 3.3 million men in the United States diagnosed with prostate cancer and one in 44 dying from the disease, early and accurate survival prediction is vital. However, accurately predicting the overall survival of patients with PAC has long been a clinical challenge due to the disease's complex and varied nature. While early diagnosis improves treatment outcomes, the diverse progression patterns of this cancer make precise prognosis difficult. Now, scientists have developed a machine learning-based method that uses ensemble models to deliver near-perfect survival estimates for patients with PAC.

In a study led by University of Sharjah (Sharjah, UAE) and Near East University (Istanbul, Turkey), the researchers applied and evaluated eight machine learning ensemble methods to predict overall survival outcomes in prostate adenocarcinoma patients, using clinical and genomic data from The Cancer Genome Atlas (TCGA) PanCancer Atlas. The models assessed in the study include Random Forest (RF), AdaBoost, Gradient Boosting (GB), Extreme Gradient Boosting (XGB), LightGBM (LGBM), CatBoost, Hard Voting Classifier (HVC), and Support Vector Classifier (SVC). These ensemble techniques combine the predictive power of multiple algorithms to improve model performance. By using essential performance indicators such as accuracy, precision, recall, F1 score, and ROC AUC score, the researchers determined how well each method predicted patient survival.

The findings, published in the journal Computers in Biology and Medicine, reveal that among the eight models tested, GB emerged as the top performer, achieving a perfect score of 1.0 in accuracy, precision, recall, and F1 score, and 0.99 for ROC AUC. Other high-performing models included RF and AdaBoost, which also demonstrated strong predictive capability and robustness in distinguishing between positive and negative survival outcomes. The ability of these models to accurately identify high-risk and low-risk patients could offer critical support for clinical decision-making and individualized patient care. The use of these AI-driven models could greatly enhance the clinical understanding of PAC and overcome existing barriers by offering tailored prognostic insights, potentially leading to improved outcomes and optimized treatment strategies.

“The outstanding performances of GB are suggestive that it is an ensemble model, highly capable of predicting PAC (Prostate adenocarcinoma), because it identifies all true positive cases, and can minimize the negative cases as well as can be clinically integrated,” the study authors wrote. “RF performances showed its ability to distinguish between positive and negative cases of PAC highlighting its high level of accuracy, especially in predicting the presence of PAC.”


Gold Member
Automated MALDI-TOF MS System
EXS 3000
POC Helicobacter Pylori Test Kit
Hepy Urease Test
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Gold Member
Automated Blood Culture System
EXB 120
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.