We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Sensitive Epigenetic-Based PCR Test Could Detect Difficult-To-Diagnose Breast Tumor

By LabMedica International staff writers
Posted on 05 Feb 2024
Print article
Image: Scientists have discovered biomarkers for rare breast tumors (Photo courtesy of Garvan Institute)
Image: Scientists have discovered biomarkers for rare breast tumors (Photo courtesy of Garvan Institute)

Phyllodes tumors, which make up less than 1% of breast tumors, present a diagnostic challenge due to their microscopic resemblance to other breast tumor types. While the majority of phyllodes tumors are benign, about 10% are malignant. Getting an accurate diagnosis is key to ensuring the right treatment is given, as a misdiagnosis can lead to inappropriate or delayed care. Typically, tumor diagnosis is based on the pathological examination of cellular patterns. Now, scientists have found the epigenetic ‘signature’ of phyllodes tumors, paving the way for the development of a sensitive epigenetic-based PCR test to detect this hard-to-diagnose breast tumor that could be routinely used in pathology laboratories.

Scientists at the Garvan Institute of Medical Research (NSW, Australia) have identified new DNA markers based on epigenetics that could provide additional diagnostic information for phyllodes tumors. Epigenetic alterations involve changes in gene activity levels without modifying the DNA sequence itself and can be influenced by environmental factors. One common epigenetic process is DNA methylation, where methyl groups attach to DNA segments, altering gene expression. In their study of samples from 33 patients, the research team observed a distinct DNA methylation pattern in phyllodes tumors, distinguishing them from other cancers. They also developed an algorithm that successfully reclassified samples that had initially been misdiagnosed. This advancement in understanding may lead to more accurate diagnoses and better patient outcomes.

“Disruption to epigenetic processes, such as DNA methylation patterns, is a recognized hallmark of cancer and can vary significantly between cancer types, allowing a unique cancer forensic signature,” said Professor Susan Clark, co-senior author and Head of the Cancer Epigenetics Lab at Garvan. “Harnessing the power of cutting-edge epigenetic technologies, like Digital Droplet PCR, our next step will be devising a sensitive epigenetic-based PCR test to detect phyllodes tumors that could be routinely used in pathology laboratories.”

Related Links:
Garvan Institute of Medical Research

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Amoebiasis Test
ELI.H.A Amoeba
New
TRAcP 5b Assay
TRAcP 5b (BoneTRAP) Assay

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.