We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




World’s First AI-Powered Diagnostic Test Accurately Identifies Respiratory Viruses in Five Minutes

By LabMedica International staff writers
Posted on 09 Feb 2023
Print article
Image: The new AI virus diagnostic test could replace current testing methods (Photo courtesy of University of Oxford)
Image: The new AI virus diagnostic test could replace current testing methods (Photo courtesy of University of Oxford)

Current testing methods for respiratory viruses – such as a lateral flow test for COVID-19 – are limited to testing for just one infection or are either lab-based and time-consuming or fast and less accurate. Now, a world-first diagnostic test powered by artificial intelligence (AI) that can identify known respiratory viruses within five minutes from just one nasal or throat swab could replace the current testing methods.

The ground-breaking virus detection and identification methodology has been described in a paper published in ACS Nano by researchers at University of Oxford (Oxford, UK). The paper demonstrates how machine learning can significantly improve the efficiency, accuracy and time required to identify different types of viruses, as well as differentiate between the strains. The technology combines molecular labeling, computer vision and machine learning to create a universal diagnostic imaging platform that looks directly at a patient sample and identifies which pathogen is present within seconds – similar to facial recognition software, but for germs.

In preliminary studies, the researchers have shown that the test can identify the COVID-19 virus in patient samples and further research determined that the test could be used for diagnosing multiple respiratory infections. In a study to validate the new method that uses AI software to identify viruses, the researchers began by labeling viruses with single-stranded DNA in more than 200 clinical samples. The images of labeled samples were captured using a commercial fluorescence microscope and processed by custom machine-learning software that is trained to recognize specific viruses by analyzing their fluorescence labels, which show up differently for each virus due to their varying surface size, shape and chemistry. The study showed that the technology is capable of rapidly identifying different types and strains of respiratory viruses, including flu and COVID-19, within five minutes and with an accuracy of >97%.

“Our simplified method of diagnostic testing is quicker and more cost-effective, accurate and future proof than any other tests currently available,” said Dr. Nicole Robb from the University of Warwick and Visiting Lecturer at Oxford’s Department of Physics. “If we want to detect a new virus, all we need to do is retrain the software to recognize it, rather than develop a whole new test. Our findings demonstrate the potential for this method to revolutionize viral diagnostics and our ability to control the spread of respiratory illnesses.”

Related Links:
University of Oxford

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Dengue Virus Test
LINEAR Dengue-CHIK

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.