We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




World’s First AI-Powered Diagnostic Test Accurately Identifies Respiratory Viruses in Five Minutes

By LabMedica International staff writers
Posted on 09 Feb 2023

Current testing methods for respiratory viruses – such as a lateral flow test for COVID-19 – are limited to testing for just one infection or are either lab-based and time-consuming or fast and less accurate. More...

Now, a world-first diagnostic test powered by artificial intelligence (AI) that can identify known respiratory viruses within five minutes from just one nasal or throat swab could replace the current testing methods.

The ground-breaking virus detection and identification methodology has been described in a paper published in ACS Nano by researchers at University of Oxford (Oxford, UK). The paper demonstrates how machine learning can significantly improve the efficiency, accuracy and time required to identify different types of viruses, as well as differentiate between the strains. The technology combines molecular labeling, computer vision and machine learning to create a universal diagnostic imaging platform that looks directly at a patient sample and identifies which pathogen is present within seconds – similar to facial recognition software, but for germs.

In preliminary studies, the researchers have shown that the test can identify the COVID-19 virus in patient samples and further research determined that the test could be used for diagnosing multiple respiratory infections. In a study to validate the new method that uses AI software to identify viruses, the researchers began by labeling viruses with single-stranded DNA in more than 200 clinical samples. The images of labeled samples were captured using a commercial fluorescence microscope and processed by custom machine-learning software that is trained to recognize specific viruses by analyzing their fluorescence labels, which show up differently for each virus due to their varying surface size, shape and chemistry. The study showed that the technology is capable of rapidly identifying different types and strains of respiratory viruses, including flu and COVID-19, within five minutes and with an accuracy of >97%.

“Our simplified method of diagnostic testing is quicker and more cost-effective, accurate and future proof than any other tests currently available,” said Dr. Nicole Robb from the University of Warwick and Visiting Lecturer at Oxford’s Department of Physics. “If we want to detect a new virus, all we need to do is retrain the software to recognize it, rather than develop a whole new test. Our findings demonstrate the potential for this method to revolutionize viral diagnostics and our ability to control the spread of respiratory illnesses.”

Related Links:
University of Oxford


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Capillary Blood Collection Tube
IMPROMINI M3
New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Immunology

view channel
Image: The simple blood marker can predict which lymphoma patients will benefit most from CAR T-cell therapy (Photo courtesy of Shutterstock)

Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy

CAR T-cell therapy has transformed treatment for patients with relapsed or treatment-resistant non-Hodgkin lymphoma, but many patients eventually relapse despite an initial response. Clinicians currently... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.