We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Automated Collection of CTCs Improves Prostate Cancer Diagnosis

By LabMedica International staff writers
Posted on 16 Sep 2019
Print article
Image: The Parsortix system for collection of circulating tumor cells (Photo courtesy of ANGLE plc).
Image: The Parsortix system for collection of circulating tumor cells (Photo courtesy of ANGLE plc).
A recent paper described the benefits of circulating tumor cell (CTC) analysis for improving the diagnosis of aggressive prostate cancer beyond currently used PSA (prostate specific antigen) measurement, biopsy and/or MRI imagery.

PSA testing can result in unnecessary biopsies and over-diagnosis with consequent over-treatment. Tissue biopsy is an invasive procedure, associated with significant risk of complications. More accurate non- or minimum-invasive diagnostic approaches are required to avoid unnecessary prostate biopsy and over-diagnosis.

Towards this end, investigators at Queen Mary University of London (United Kingdom) evaluated the potential of using circulating tumor cell analysis for prostate cancer diagnosis, particularly in predicting the presence of clinically significant prostate tumors in patients prior to biopsy.

The investigators used the ANGLE plc (Surrey, United Kingdom) Parsortix system to capture and analyze CTCs from 98 pre-biopsy and 155 newly diagnosed prostate cancer patients.

The Parsortix liquid biopsy process requires a blood sample - typically 10 milliliters in an EDTA vacutainer tube. As no pre-processing is required, the tube is simply attached to the Parsortix instrument. A Parsortix filtration cassette is inserted into the instrument and the system is primed for use. The instrument automatically passes the blood through the filtration cassette, and CTCs are caught in the cassette due to their larger size and lower compressibility as compared to other blood components.

Once trapped in the cassette, CTCs may be automatically stained with selected antibodies, which enables their identification and characterization. In addition, CTCs may be enumerated by placing the filtration cassette under a fluorescent microscope. Alternatively, cells may be eluted from the cassette and recovered in buffer solution for genomic analysis.

Results obtained with the Parsortix system indicated that the appearance of CTCs in pre-biopsy blood samples was indicative of the presence of aggressive prostate cancer. When the CTC tests results were combined with those of the current PSA test, the presence of aggressive prostate cancer in subsequent biopsies was predicted with accuracy of over 90%, better than any previously reported biomarkers.

Senior author Dr. Yong-Jie Lu, professor of molecular oncology at Queen Mary University of London said, "The current prostate cancer test often leads to unnecessary invasive biopsies and over-diagnosis and over treatment of many men, causing significant harm to patients and a waste of valuable healthcare resources. There is clearly a need for better selection of patients to undergo the biopsy procedure. Testing for circulating tumor cells is efficient, non-invasive, and potentially accurate, and we have now demonstrated its potential to improve the current standard of care. By combining the new CTC analysis with the current PSA test, we were able to detect prostate cancer with the highest level of accuracy ever seen in any biomarker test, which could spare many patients unnecessary biopsies. This could lead to a paradigm shift in the way we diagnose prostate cancer."

The study was published in the August 7, 2019, online edition of the Journal of Urology.

Related Links:
Queen Mary University of London
ANGLE plc

Gold Member
Turnkey Packaging Solution
HLX
Unit-Dose Packaging solution
HLX
New
Dengue Test
Lab Rapid Dengue NS1
New
Respiratory Syncytial Virus Test
QuickVue RSV Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The inbiome molecular culture ID technology has received FDA breakthrough device designation (Photo courtesy of inbiome)

Revolutionary Molecular Culture ID Technology to Transform Bacterial Diagnostics

Bacterial infections pose a major threat to public health, contributing to one in five deaths worldwide. Current diagnostic methods often take several days to provide results, which can delay appropriate... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: The GeneXpert system’s fast PCR Xpert tests can fight AMR and superbugs with fast and accurate PCR in one hour (Photo courtesy of Cepheid)

Cepheid Partners with Fleming Initiative to Fight Antimicrobial Resistance

Antimicrobial resistance (AMR) is responsible for over one million deaths globally each year and poses a growing challenge in treating major infectious diseases like tuberculosis, Escherichia coli (E.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.