We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Novel Approach Can Identify People with Higher Risk of TB Infection

By LabMedica International staff writers
Posted on 23 Jan 2024
Print article
Image: Novel approach identifies people at risk of developing TB (Photo courtesy of 123RF)
Image: Novel approach identifies people at risk of developing TB (Photo courtesy of 123RF)

Tuberculosis (TB) is a serious bacterial disease that primarily affects the lungs and can be deadly if left untreated. It spreads through the air when people with TB expel bacteria via droplets. While many individuals who contract TB remain asymptomatic, a small percentage do not control the infection, leading to active disease. Current TB testing methods, such as skin tests or blood tests like the interferon gamma release assay (IGRA), can detect an immune response to TB but fail to differentiate between those at high or low risk of disease progression. This limitation underscores the need for improved testing methods to identify individuals at higher risk of developing TB, allowing for more focused preventative treatment. Researchers have now introduced an innovative approach to studying the progression of TB from infection to disease, identifying and treating individuals at increased risk who might be missed by existing testing methods.

Researchers at the University of Leicester (Leicester, UK) employed PET-CT, an advanced imaging technique, to study how TB infection progresses and to identify individuals at higher risk of developing the disease. This method enabled the team to evaluate a potential new blood test to identify those at higher risk without the need to recruit a large and costly cohort. The study involved 20 adults linked to households of individuals being treated for TB. These participants underwent chest radiography and IGRA screening for TB infection. The research team then utilized two novel methods to monitor disease progression over the next year: PET-CT imaging and a unique bacteriophage-based assay called Actiphage, developed by PBD Biotech (Saskatoon, Canada). Actiphage utilizes bacteriophages, viruses that specifically infect bacterial cells, to target TB bacteria. When the bacteriophage infects TB bacteria, it releases bacterial DNA, which can then be detected, even at very low levels that other clinical tools cannot identify.

All participants in the study were asymptomatic with normal chest X-rays. They first underwent a baseline PET-CT scan. If the scan showed metabolic activity indicative of TB that could be sampled, they underwent bronchoscopy and sampling. Participants without sampleable findings on the initial PET-CT, or with negative sampling results, received a follow-up PET-CT scan after three to four months. Through PET-CT, the researchers identified four individuals from whom TB bacteria were isolated either from the lung airway or from PET-positive lymph nodes. Additionally, two more participants showed progressive changes on the second PET-CT scan. All six individuals received TB treatment, and follow-up PET-CT scans three months post-treatment showed resolving or completely resolved changes, suggesting the PET-CT changes were due to active TB infection.

The Actiphage test results were also promising. The researchers observed a significant correlation between a positive baseline Actiphage test and subsequent treatment for high-risk TB infection features. Actiphage results were positive in 12 (60%) participants at baseline and in all six of the treated PET-CT-positive participants. The study's findings led the researchers to propose that blood biomarkers aimed at detecting bacterial presence could complement existing biomarkers of the host immune response, thus improving the stratification of TB risk in individuals with TB infection.

“Our results are exciting for two reasons. Firstly, they show that PET-CT could be an effective tool for identifying people with higher risk TB infection. This can help us to perform studies to develop new tests and evaluate new treatments, including vaccines more efficiently and at lower cost,” said Dr. Pranabashis Haldar, Clinical Senior Lecturer in Respiratory Medicine at the University of Leicester. “Secondly, our findings suggest that TB bacteria are found in blood more often than has previously been thought and importantly, the presence of the bacteria in blood may be an indicator of uncontrolled or progressive TB infection.”

Related Links:
University of Leicester
PBD Biotech

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Protein ‘signatures’ obtained via a blood sample can be used to predict the onset of 67 diseases (Photo courtesy of Queen Mary University of London)

Protein Signatures in Blood Can Predict Risk of Developing More Than 60 Diseases

Measuring specific proteins to diagnose conditions like heart attacks, where troponin is tested, is a well-established clinical practice. Now, new research highlights the broader potential of protein measurements... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Microbiology

view channel
Image: The Simplexa C. auris direct kit is a real-time polymerase chain reaction assay run on the LIAISON MDX instrument (Photo courtesy of Diasorin)

Novel Molecular Test to Help Prevent and Control Multi Drug-Resistant Fungal Pathogen in Healthcare Settings

Candida auris (C. auris) is a rapidly emerging multi drug-resistant fungal pathogen that is commonly found in healthcare environments, where it presents a challenge due to its ability to asymptomatically... Read more

Pathology

view channel
Image: The tool can improve precision oncology by accurately predicting molecular subtypes and therapy responses (Photo courtesy of Shutterstock)

Computational Tool Integrates Transcriptomic Data for Improved Breast Cancer Diagnosis and Treatment

Breast cancer is the most commonly diagnosed cancer globally, presenting in various subtypes that require precise identification for effective, personalized treatment. Traditionally, cancer subtyping has... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.