We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Smartphone Microscope Detects Blood Parasites Quickly

By LabMedica International staff writers
Posted on 20 May 2015
A new smartphone microscope has been developed that is capable of detecting and quantifying infection by parasitic worms using video and a single drop of blood and it is hoped that this new technology could make a difference in the battle against neglected tropical diseases. More...


Diseases caused by the filarial nematodes Loa loa, Onchocerca volvulus, and Wuchereria bancrofti are a major public health and socioeconomic burden in co-endemic regions of Africa and the severity of symptoms and long-term consequences for patients depend on both the parasite and the parasitic load.

Scientists at the University of California, Berkeley (CA USA) and an international team of collaborators developed a mobile phone–based video microscope that automatically quantifies L. loa microfilariae (mf) in whole blood loaded directly into a small glass capillary from a finger prick without the need for conventional sample preparation or staining. They evaluated L. loa mf density in whole blood of 33 Loa-infected subjects from the region surrounding Yaoundé (Cameroon), using the mobile phone video microscope.

The mobile phone video microscope used in this study, which is referred to as the CellScope Loa, was built from a reversed iPhone camera lens module, a linear rail and carriage a hobby servo, an Arduino Micro, a Bluetooth communication board and a 3-D-printed plastic body. The investigators validated the performance and usability of the device by testing 33 patients who were potentially infected with Loa loa. The smartphone microscope's results correlated with those obtained with conventional manual thick smear counts.

The blood sample is moved in front of a camera, and an algorithm analyzes the "wriggling" motion of any worms present, calculating how many there are and displaying the result on the phone's screen. From the time a sample is loaded into the device, the calculating process takes up to two minutes. An additional minute is spent pricking the patient's finger and loading the blood into the device's capillary. Overall, CellScope Loa provides results swiftly and can inform health workers in the field whether or not it is safe to administer ivermectin to a patient.

Daniel A. Fletcher, PhD, an associate chair and professor of bioengineering and senior author of the study said, “We previously showed that mobile phones can be used for microscopy, but this is the first device that combines the imaging technology with hardware and software automation to create a complete diagnostic solution.” The study was published on May 6, 2015, in the journal Science Translational Medicine.

Related Links:

University of California, Berkeley



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Collection and Transport System
PurSafe Plus®
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The nanotechnology-based liquid biopsy test could identify cancer at its early stages (Photo courtesy of 123RF)

2-Hour Cancer Blood Test to Transform Tumor Detection

Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.