We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Fluidigm

Fluidigm Corporation focuses on the most pressing needs in translational and clinical research, including cancer, imm... read more Featured Products: More products

Download Mobile App




Epigenomic Biomarker Predict CAR T-Cell Therapy Resistance in Pediatric Leukemia

By LabMedica International staff writers
Posted on 18 Apr 2022
Print article
Image: Fluidigm CyTOF2 Mass Cytometer (Photo courtesy of University of Minnesota)
Image: Fluidigm CyTOF2 Mass Cytometer (Photo courtesy of University of Minnesota)

Children with acute lymphoblastic leukemia (ALL) whose cells express an epigenomic biomarker rooted in DNA methylation patterns may be less likely to respond to CD19-directed CAR T-cell therapy.

CAR T-cell therapy is a type of immunotherapy in which immune cells called T cells are harvested from a patient, reprogrammed to target cancer cells, and infused back into the patient to fight the cancer. A common CAR T-cell target is the receptor CD19; however, cancer cells can mutate CD19 or suppress its expression to develop CAR T resistance. While CD19 expression is currently one of the few biomarkers of potential CAR T response, not all patients who develop resistance lose CD19 expression.

Medical Scientists collaborating with the Seattle Children's Hospital (Seattle, WA, USA) acquired pretreatment bone marrow samples from the PLAT-02 clinical trial. The samples were collected from seven patients who experienced a complete remission following CD19-targeted CAR T therapy and seven patients who did not have a response, defined by continued evidence of circulating leukemia cells 63 days post-treatment. The team performed extensive studies, including whole-exome sequencing, bulk RNA-sequencing, long-read sequencing of the CD19 locus, array-based methylation testing, ATAC sequencing, single-cell RNA sequencing, and CyTOF mass cytometry (Fluidigm, South San Francisco, CA, USA).

The investigators reported that they found 238 regions of increased DNA methylation in patients who did not respond to treatment, and further determined that the pre-treatment methylation patterns were those known to be turned off by polycomb repressive complex 2 (PRC2) repression in stem cells. They then did a gene set enrichment analysis of their ATAC sequencing data and saw increased accessibility of chromatin at regions known to be associated with proliferation and cell cycling in stem cells.

The team also identified decreased expression of genes involved in antigen presentation and processing, pathways that are crucial for mounting an immune response, in cells that did not respond to CAR T therapy. Decreased antigen presentation could indicate that, even if leukemia cells continue to express CD19, they may not effectively process additional immune targets.

Javed Khan, MD, the senior author of the study said, “Interestingly, we saw subpopulations of cells expressing both lymphoid and myeloid markers, indicating that the epigenomes of some nonresponsive leukemias may contain a hybrid population of cells with a hybrid of ALL and AML epigenomes. Our data suggest that these leukemias, characterized by both lymphoid and myeloid-specific accessible regions, are likely less differentiated than responsive leukemia.” The study was presented at the American Association of Cancer Research's annual meeting held April 8-13, 2022, in New Orleans, LA, USA.

Related Links:
Seattle Children's Hospital 
Fluidigm 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.