We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Successful Cardiac Repair Depends on Maturity of Transplanted Stem Cells

By LabMedica International staff writers
Posted on 18 Jan 2016
A team of Japanese cells biologists has shown that the likelihood of stem cell therapy successfully repairing damaged heart muscle depends to large extent on the maturity of the stem cells at the time they are transplanted into the damaged organ.

Although transplantation of induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) has been reported in several animal models, the treatment effect was limited, probably due to poor optimization of the injected cells. More...


To better optimize CMs for transplantation, investigators at Kyoto University (Japan) used in vivo bioluminescence imaging to compare the engraftment efficiency of intramyocardially-injected undifferentiated-iPSCs, day four mesodermal cells, and purified iPSC-CMs 8 days, 20 days, and 30 days after initial differentiation.

They reported in the January 8, 2016, online edition of the journal Scientific Reports that the engraftment efficiency of day 20 CMs was significantly higher compared to other cell populations. Transplantation of day 20 CMs into the infarcted hearts of immunodeficient mice showed good engraftment, and echocardiography showed significant functional improvement by cell therapy. Moreover, the imaging signal at three months post injection indicated engrafted CMs proliferated in the host heart. These results suggested that day 20 CMs had very high engraftment, proliferation, and therapeutic potential in host mouse hearts.

"Cells of different maturation will be mixed and transplanted together, but heart cells at different stages could behave very differently," said first author Dr. Shunsuke Fukakoshi. "We need to test animals bigger than mice."

Related Links:

Kyoto University



Gold Member
Automated MALDI-TOF MS System
EXS 3000
Portable Electronic Pipette
Mini 96
Sample Transportation System
Tempus1800 Necto
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more

Microbiology

view channel
Image: The rapid diagnostic test is being piloted across three UK hospitals (Photo courtesy of Imperial College Healthcare)

15-Minute Blood Test Diagnoses Life-Threatening Infections in Children

Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.