We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics

Download Mobile App




Successful Cardiac Repair Depends on Maturity of Transplanted Stem Cells

By LabMedica International staff writers
Posted on 18 Jan 2016
Print article
Image: Micrograph of normal heart cells (cardiomyocytes). Nuclei are shown in blue (Photo courtesy of Yoshida Laboratory, Kyoto University).
Image: Micrograph of normal heart cells (cardiomyocytes). Nuclei are shown in blue (Photo courtesy of Yoshida Laboratory, Kyoto University).
A team of Japanese cells biologists has shown that the likelihood of stem cell therapy successfully repairing damaged heart muscle depends to large extent on the maturity of the stem cells at the time they are transplanted into the damaged organ.

Although transplantation of induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) has been reported in several animal models, the treatment effect was limited, probably due to poor optimization of the injected cells.

To better optimize CMs for transplantation, investigators at Kyoto University (Japan) used in vivo bioluminescence imaging to compare the engraftment efficiency of intramyocardially-injected undifferentiated-iPSCs, day four mesodermal cells, and purified iPSC-CMs 8 days, 20 days, and 30 days after initial differentiation.

They reported in the January 8, 2016, online edition of the journal Scientific Reports that the engraftment efficiency of day 20 CMs was significantly higher compared to other cell populations. Transplantation of day 20 CMs into the infarcted hearts of immunodeficient mice showed good engraftment, and echocardiography showed significant functional improvement by cell therapy. Moreover, the imaging signal at three months post injection indicated engrafted CMs proliferated in the host heart. These results suggested that day 20 CMs had very high engraftment, proliferation, and therapeutic potential in host mouse hearts.

"Cells of different maturation will be mixed and transplanted together, but heart cells at different stages could behave very differently," said first author Dr. Shunsuke Fukakoshi. "We need to test animals bigger than mice."

Related Links:

Kyoto University



Print article

Channels

Molecular Diagnostics

view channel
Image: Photomicrograph of histopathology of Barrett`s esophagus showing the characteristic goblet cells (Alcian blue stain) (Photo courtesy of Nephron).

Genomic Copy Number Predicts Esophageal Cancer Years Before Transformation

Barrett’s esophagus is a condition in which the lining of the esophagus changes, becoming more like the lining of the small intestine rather than the esophagus. This occurs in the area where the esophagus... Read more

Immunology

view channel
Image: The QX200 droplet digital polymerase chain reaction (ddPCR) instrument (Photo courtesy of Bio-Rad).

Click Chip’ Detects Early-Stage Liver Cancer Biomarkers in Extracellular Vesicles

Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer-related deaths worldwide. The poor prognosis of HCC can be attributed to the fact that diagnosis is often made at a late stage in... Read more

Industry News

view channel
Illustration

2020 AACC Annual Scientific Meeting & Clinical Lab Expo to Be an All Virtual Event Due to Coronavirus Pandemic

The American Association for Clinical Chemistry (AACC Washington, DC, USA) has decided to hold the 2020 AACC Annual Scientific Meeting & Clinical Lab Expo as a virtual event, rather than as a live... Read more
Copyright © 2000-2020 Globetech Media. All rights reserved.