Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

By LabMedica International staff writers
Posted on 30 Apr 2025

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. More...

However, around 1 in 5 individuals with myeloma have a high-risk form of the disease, which is marked by an earlier relapse following initial treatment. This leads to a shorter survival period, typically just 2-3 years. A key challenge for clinicians is predicting when relapse will occur so that patients can be treated with effective alternative therapies before the disease advances. Now, a research team is evaluating a new mass spectrometry-based monitoring technique to determine its ability to predict and identify early relapses of the disease.

The introduction of more effective therapies over the past two decades has significantly improved survival rates for myeloma patients. The most recent generation of myeloma drugs includes therapeutic monoclonal antibodies (t-mAb), which have shown remarkable efficacy. However, these drugs can interfere with traditional electrophoretic methods used to measure the patient’s monoclonal immunoglobulin (M-Ig), making patient monitoring more challenging. Therefore, alternative laboratory methods that address the limitations of these conventional approaches are needed. Oxford University Hospitals (Oxford, UK), in collaboration with other institutions, is leading the investigation into a new monitoring method known as quantitative immunoprecipitation-mass spectrometry (QIP-MS). The research team will assess whether QIP-MS can predict and detect relapse earlier than current methods in patients with high-risk myeloma participating in the Myeloma XV RADAR trial. This trial involves analyzing bone marrow samples to determine the most effective treatments for myeloma and aims to measure small amounts of myeloma cells, referred to as minimal residual disease (MRD), that may persist after initial treatment.

Previous research has shown that QIP-MS is clinically useful as a first-line screening tool for investigating monoclonal gammopathy, offering higher sensitivity and resolution than the standard methods currently in use. Serum or urine protein electrophoresis (SPEP or UPEP) and immunofixation electrophoresis (SIFE or UIFE) are commonly used to detect M-proteins in multiple myeloma patients. However, SPEP and SIFE are not sufficiently sensitive to detect low levels of M-proteins, which may still be clinically significant. QIP-MS, on the other hand, allows for the identification of M-proteins in patients with multiple myeloma who are otherwise in complete remission, and could be ideal for evaluating MRD in peripheral blood. One significant advantage of QIP-MS is that it uses blood samples rather than bone marrow, which, if proven to be more sensitive, would reduce the need for painful procedures during regular monitoring for patients.


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
New
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.