We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Single Mutation Linked to Fatty Disorders of Liver and Skin

By LabMedica International staff writers
Posted on 05 Aug 2019
Print article
Image: A micrograph of non-alcoholic fatty liver disease (NAFLD). The liver has a prominent (centrilobular) macrovesicular steatosis (white/clear round/oval spaces) and mild fibrosis (green). The hepatocytes stain red. Macrovesicular steatosis is lipid accumulation that is so large it distorts the cell\'s nucleus (Photo courtesy of Wikimedia Commons).
Image: A micrograph of non-alcoholic fatty liver disease (NAFLD). The liver has a prominent (centrilobular) macrovesicular steatosis (white/clear round/oval spaces) and mild fibrosis (green). The hepatocytes stain red. Macrovesicular steatosis is lipid accumulation that is so large it distorts the cell\'s nucleus (Photo courtesy of Wikimedia Commons).
The common liver disorder non-alcoholic fatty liver disease (NAFLD) has been found to share a genetic linkage with Chanarin-Dorfman syndrome, a rare skin condition.

NAFLD, which affects more than one-third of the world’s population, is characterized by excessive fat build-up in the liver due to causes other than alcohol use. There are two types of NAFLD: non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH). Non-alcoholic fatty liver usually does not progress to liver damage or NASH. NASH includes both a fatty liver and liver inflammation. It may lead to complications such as cirrhosis, liver cancer, liver failure, or cardiovascular disease. NAFLD displays a strong genetic component, and inherited forms of have been suspected. However, the molecular mechanisms of hereditary NAFLD have not been described.

Investigators at Thomas Jefferson University (Philadelphia, PA, USA) identified a gene, that when mutated, causes NAFLD. This finding was made while the investigators were studying Chanarin-Dorfman syndrome, a severe but rare skin disorder, in several families from Iran. Sufferers of Chanarin-Dorfman syndrome develop dry, reddish, and scaly skin shortly after birth and later on in life acquire abnormally large and fatty livers.

The investigator performed whole-exome or targeted next-generation sequencing on patients from six families who demonstrated autosomal dominant NAFLD. From their results, the investigators described a heritable form of NAFLD and/or dyslipidemia due to monoallelic ABHD5 (abhydrolase domain containing 5) mutations, with complete clinical expression after the fourth decade of life. Mutations in the ABHD5 gene have been associated with Chanarin-Dorfman syndrome, a triglyceride storage disease with impaired long-chain fatty acid oxidation.

The results obtained during the present study came from seven unrelated multiplex families encompassing 39 affected individuals. The prevalence of ABHD5-associated NAFLD was estimated to be one in 1,137 individuals in a normal population.

“Studying a rare, heritable disease such as Chanarin-Dorfman syndrome, can be very helpful in identifying conditions which are much more prevalent, like in the case of non-alcoholic fatty liver disease,” said senior author Dr. Jouni Uitto, professor of dermatology and cutaneous biology at Thomas Jefferson University. “It turns out that if you have one mutated copy of the ABHD5 gene you get the liver disease only, but if you have mutations in both copies then you get the liver disease plus Chanarin-Dorfman syndrome.”

“The link between non-alcoholic fatty liver disease and scaly skin diseases such as Chanarin-Dorfman syndrome highlights the importance of regulated lipid metabolism in skin physiology,” said Dr. Uitto. “In fact, there are several heritable disorders manifesting with dry and scaly skin associated with mutations in genes like ABHD5 that are involved in lipid metabolism. Identification of such genes and specific mutations now form the basis for ongoing studies attempting to develop treatment for these often devastating skin disorders.”

The study was published in the August 2019 issue of the Journal of Hepatology.

Related Links:
Thomas Jefferson University

Gold Supplier
Automated, Random Access Chemistry Analyzer
LIDA 300
New
DNA Isolation Kit
Maxwell CSC Blood DNA Kit
New
3-Part Auto Hematology Analyzer
PE-6800
New
Human Papillomavirus (HPV) Test
S3108E HPV G23

Print article
MEDLAB - INFORMA

Channels

Immunology

view channel
Image: Scientists have won USD 9.5 million to study emerging pathogens (Photo courtesy of Pexels)

Study of Emerging Pathogens to Better Understand Influenza-Antibody Interactions Could Improve Diagnostics

Outbreaks of Avian influenza have occurred around the world for over a century. The highly pathogenic H5N1 virus which was first identified in 1996 can lead to severe disease and has a high fatality rate... Read more

Microbiology

view channel
Image: Medical illustration of Carbapenem-resistant Enterobacteriacea (Photo courtesy of CDC, Stephanie Rossow)

Breakthrough Test Enables Targeted Antibiotic Therapy for Various Enterobacter Species

Bacteria of the Enterobacter genus are considered to be the most dangerous bacteria linked to hospital infections across the world. Some of their representatives demonstrate high resistance to commonly-used... Read more

Technology

view channel
Image: Flexible copper sensor made cheaply from ordinary materials (Photo courtesy of University of São Paulo)

Low-Cost Portable Sensor Detects Heavy Metals in Sweat

Heavy metals like lead and cadmium can be found in batteries, cosmetics, food and many other things that have become a part of daily life. However, they become toxic if they accumulate in the human body... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.