We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Regulatory Role of Long Non-Coding RNAs Defined

By LabMedica International staff writers
Posted on 12 Dec 2017
Print article
Image: Intermediate magnification micrograph of a low malignant potential (LMP) mucinous ovarian tumor (Photo courtesy of Wikimedia Commons).
Image: Intermediate magnification micrograph of a low malignant potential (LMP) mucinous ovarian tumor (Photo courtesy of Wikimedia Commons).
The long non-coding RNA DNM3O has been found to regulate the processes that lead to metastasis and the high mortality of ovarian cancer.

Long non-coding RNAs (lncRNAs) are considered to be non-protein coding transcripts longer than 200 nucleotides. This somewhat arbitrary limit distinguishes lncRNAs from small regulatory RNAs such as microRNAs (miRNAs), short interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and other short RNAs. LncRNAs have been found to be involved in numerous biological roles including imprinting, epigenetic gene regulation, cell cycle and apoptosis, and metastasis and prognosis in solid tumors. Most lncRNAs are expressed only in a few cells rather than whole tissues, or they are expressed at very low levels, making them difficult to study. Their name notwithstanding, long non-coding RNAs (lncRNAs) have been found to actually encode synthesis of small polypeptides that can fine tune the activity of critical cellular components.

This high mortality of ovarian cancer is primarily caused by resistance to therapy and the diagnosis of ovarian cancer after it has already metastasized, which occurs in approximately 80% of patients. Little is understood about the contribution of lncRNA to epithelial-to-mesenchymal transition (EMT), which correlates with metastasis.

Investigators at Thomas Jefferson University (Philadelphia, PA, USA) sought to establish a connection between lncRNAs and EMT in ovarian cancer. To this end, they performed an integrated analysis of more than 700 ovarian cancer molecular profiles, including genomic data sets, from four patient cohorts.

Results published in the November 17, 2017, online edition of the journal Nature Communications revealed a direct link between overexpression of the lncRNAs DNM3OS, MEG3, and MIAT and their reproducible gene regulation in ovarian cancer EMT. Genome-wide mapping showed 73% of MEG3-regulated EMT-linked pathway genes contained MEG3 binding sites. DNM3OS overexpression, but not MEG3 or MIAT, significantly correlated to worse overall patient survival. In contrast, DNM3OS knockdown resulted in altered EMT-linked genes/pathways, mesenchymal-to-epithelial transition, and reduced cell migration and invasion.

“Overexpression of one of the lncRNAs, DNM30S, was significantly correlated with worse overall ovarian cancer patient survival,” said senior author Dr. Christine Eischen, professor of cancer biology at Thomas Jefferson University.

Related Links:
Thomas Jefferson University

New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Chagas Disease Test
LIAISON Chagas
New
Chlamydia Trachomatis Assay
Chlamydia Trachomatis IgG

Print article

Channels

Clinical Chemistry

view channel
Image: A one-step confirmatory laboratory test could definitively diagnose active syphilis infection within 10 minutes (Photo courtesy of Adobe Stock)

First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes

In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.