We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Failing Hearts Switch Fuels to Continue Generating Energy

By LabMedica International staff writers
Posted on 24 Feb 2016
A new study provides fresh biochemical insight into heart failure and may eventually lead to new diagnostic and pathology tests as well as therapeutic targets to prevent or slow progression of the disease. More...
The findings suggest a new approach to help treat early stages.

The research was led by Daniel Kelly, MD, scientific director of the Lake Nona campus of Sanford Burnham Prebys Medical Discovery Institute (SPB; La Jolla, CA & Lake Nona, FA, USA) as a collaborative study by scientists from SPB, Duke University, University of Illinois, and University of Cologne.

“Our research shows that as the heart fails, it loses its ability to burn fatty acids—the building blocks of fat—and instead starts using ketone bodies as an alternative fuel. It’s almost like the heart is starving because it doesn’t have the enzymatic machinery to burn fat anymore,” said Dr. Kelly.

To better understand what metabolic changes occur in place of fatty acid-burning, the team studied well established mouse models of the early and late stages of heart failure. They analyzed heart muscle cells to identify enzymes involved in metabolizing fuel that may ultimately become targets for therapies. They found that levels of BDH1, an enzyme involved in ketone metabolism, were 2x as high in mice with both early stage and complete heart failure compared to normal animals.

“It was surprising that BDH1 was increased in the failing heart, because this is an enzyme that is involved in burning ketones,” said Dr. Kelly, “We find it more in brain and liver, but one wouldn’t expect it to be very active in the heart.”

The new results suggest that a heart in the midst of failure has the ability to reprogram itself to take in more ketones and use them in a lower oxygen consumption fuel metabolism than fatty acid metabolism. Future studies on whether this is a productive or a faulty adaptive fuel shift could lead to new therapeutic avenues. Improved treatments would also be good news as the prevalence of heart failure is expected to increase in the coming years.

The study was published January 27, 2016, in the journal Circulation.

Related Links:

Sanford Burnham Prebys Medical Discovery Institute



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
H-FABP Assay
Heart-Type Fatty Acid-Binding Protein Assay
New
Hemoglobin/Haptoglobin Assay
IDK Hemoglobin/Haptoglobin Complex ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: AI-analyzed images from the FDM microscope show platelet clumps in motion (Photo courtesy of Hirose et al CC-BY-ND)

AI Microscope Spots Deadly Blood Clots Before They Strike

Platelets are small blood cells that act as emergency responders in the body, rushing to areas of injury to help stop bleeding by forming clots. However, sometimes platelets can overreact, leading to complications.... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.