Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Cancer Researchers Identify Enzyme That Enables Glucose-Independent Tumor Growth

By LabMedica International staff writers
Posted on 01 Nov 2015
Cancer researchers have identified an enzyme that allows tumor cells to exploit alternative energy sources in order to survive when sources of glucose have been depleted.

Investigators at McGill University (Montreal, Canada) and colleagues from several other research institutes used combined transcriptional-metabolomic network analysis to identify metabolic pathways that could support glucose-independent tumor cell proliferation.

They reported in the October 15, 2015, issue of the journal Molecular Cell that glucose deprivation stimulated rearrangement of the tricarboxylic acid (TCA or Krebs) cycle and early steps of the gluconeogenesis (glucose synthesis) pathway to promote glucose-independent cell proliferation. More...
Glucose limitation promoted the production of phosphoenolpyruvate (PEP) from glutamine via the activity of the enzyme mitochondrial PEP-carboxykinase (PEPCK).

PEPCK is an enzyme that converts oxaloacetate into phosphoenolpyruvate and carbon dioxide. As PEPCK acts at the junction between glycolysis and the Krebs cycle, it causes decarboxylation of a four-carbon molecule, creating a three-carbon molecule. When GTP (guanosine-5'-triphosphate) is present, PEPCK decarboxylates and phosphorylates oxaloacetate for its conversion to phosphoenolpyruvate (PEP), which is the first committed step in gluconeogenesis. As a phosphate is transferred, the reaction produces a GDP (guanosine-5'-diphosphate molecule).

The investigators found that under conditions of glucose deprivation, glutamine-derived PEP was used to fuel biosynthetic pathways normally sustained by glucose, including serine and purine biosynthesis. PEPCK expression was required to maintain tumor cell proliferation under limited-glucose conditions in vitro and tumor growth in vivo, as shown in a mouse model. Elevated PEPCK expression was observed in several human tumor types and was enriched in tumor tissue from non-small-cell lung cancer (NSCLC) patients.

"The fact that PEPCK levels are elevated in some cases of human lung cancer suggests that this enzyme may play a role in the human disease," said senior author Dr. Russell Jones, associate professor of physiology at McGill University. "Our work shows that cancers can use alternative fuel sources to help drive their growth under stressful conditions. This remarkable flexibility is part of what makes cancer so deadly, but offers hope in finding new therapies."

Related Links:

McGill University



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Automated MALDI-TOF MS System
EXS 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.