We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Induced Stem Cells Show Genetic Abnormalities Not Found in Embryonic Stem Cells

By LabMedica International staff writers
Posted on 15 Jul 2014
All stem cells are not created equal: genomic evaluation revealed that the genome of stem cells generated from adult cells (induced pluripotent stem cells or iPS cells) differed considerably from that of "gold standard" human embryonic stem cells (ES cells).

Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. More...
Although ES cells from in vitro fertilized embryos (IVF ES cells) represent the "gold standard," they are genetically distinct from likely transplant recipients, and their use is compromised by ethical and logistical considerations. While autologous iPS cells are freely obtainable, they are prone to epigenetic and transcriptional aberrations.

A team of researchers from the University of California, San Diego (USA), Oregon Health & Science University (Portland, USA) and the Salk Institute for Biological Studies (La Jolla, CA, USA) cooperated to perform a study to determine whether abnormalities found in iPS cells were intrinsic to somatic cell reprogramming or secondary to the reprogramming method. To this end, they prepared genetically matched sets of human IVF ES cells (four lines), iPS cells (seven lines), and two lines of nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT). The 13 cell lines were examined by genome-wide analyses.

Results published in the July 2, 2014, online edition of the journal Nature revealed critical differences in the genomes of stem cells created with the three methods. Specifically, DNA methylation and gene expression patterns in nuclear transfer ES cells more closely resembled those of ES cells than did iPS cells, which revealed alterations apparently caused by the reprogramming process.

“The nuclear transfer ES cells are much more similar to real ES cells than the iPS cells,” said co-senior author Dr. Louise Laurent, assistant professor of reproductive medicine at the University of California, San Diego. “They are more completely reprogrammed and have fewer alterations in gene expression and DNA methylation levels that are attributable to the reprogramming process itself. Our results have shown that widely used iPS cell reprogramming methods make cells that are similar to standard ES cells in broad strokes, but there are important differences when you look really closely. By using the egg cell to do the job, we can get much closer to the real thing. However, not only is nuclear transfer technically difficult, but federal funds cannot be used in experiments involving this procedure. If we can figure out what factors in the egg drive the reprogramming process, maybe we can design a better iPS cell reprogramming method.”

Related Links:

University of California, San Diego
Oregon Health & Science University
Salk Institute for Biological Studies



Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.