Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Induced Stem Cells Show Genetic Abnormalities Not Found in Embryonic Stem Cells

By LabMedica International staff writers
Posted on 15 Jul 2014
All stem cells are not created equal: genomic evaluation revealed that the genome of stem cells generated from adult cells (induced pluripotent stem cells or iPS cells) differed considerably from that of "gold standard" human embryonic stem cells (ES cells).

Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. More...
Although ES cells from in vitro fertilized embryos (IVF ES cells) represent the "gold standard," they are genetically distinct from likely transplant recipients, and their use is compromised by ethical and logistical considerations. While autologous iPS cells are freely obtainable, they are prone to epigenetic and transcriptional aberrations.

A team of researchers from the University of California, San Diego (USA), Oregon Health & Science University (Portland, USA) and the Salk Institute for Biological Studies (La Jolla, CA, USA) cooperated to perform a study to determine whether abnormalities found in iPS cells were intrinsic to somatic cell reprogramming or secondary to the reprogramming method. To this end, they prepared genetically matched sets of human IVF ES cells (four lines), iPS cells (seven lines), and two lines of nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT). The 13 cell lines were examined by genome-wide analyses.

Results published in the July 2, 2014, online edition of the journal Nature revealed critical differences in the genomes of stem cells created with the three methods. Specifically, DNA methylation and gene expression patterns in nuclear transfer ES cells more closely resembled those of ES cells than did iPS cells, which revealed alterations apparently caused by the reprogramming process.

“The nuclear transfer ES cells are much more similar to real ES cells than the iPS cells,” said co-senior author Dr. Louise Laurent, assistant professor of reproductive medicine at the University of California, San Diego. “They are more completely reprogrammed and have fewer alterations in gene expression and DNA methylation levels that are attributable to the reprogramming process itself. Our results have shown that widely used iPS cell reprogramming methods make cells that are similar to standard ES cells in broad strokes, but there are important differences when you look really closely. By using the egg cell to do the job, we can get much closer to the real thing. However, not only is nuclear transfer technically difficult, but federal funds cannot be used in experiments involving this procedure. If we can figure out what factors in the egg drive the reprogramming process, maybe we can design a better iPS cell reprogramming method.”

Related Links:

University of California, San Diego
Oregon Health & Science University
Salk Institute for Biological Studies



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Gold Member
Hybrid Pipette
SWITCH
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.