We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Researchers Employ High-Energy X-Ray to Image Living Cancer Cells

By LabMedica International staff writers
Posted on 13 Mar 2014
Scientists have performed the first studies of living biologic cells using high-energy X-rays. More...
In the future, the new technique should make it possible to study unaltered living cells at high resolution.

“The new method for the first time enables us to investigate the internal structures of living cells in their natural environment using hard X-rays,” reported the researchers from the working group. “Thanks to the ever-greater resolution of the various investigative techniques, it is increasingly important to know whether the internal structure of the sample changes during sample preparation.” Scientists are working on the new research at the Deutsches Elektronen-Synchrotron DESY (Hamburg, Germany) PETRA III research light source. The new technology reveals distinct differences in the internal cellular structure between the living and dead, chemically fixed cells. “The new method for the first time enables us to investigate the internal structures of living cells in their natural environment using hard X-rays,” emphasized the leader of the working group, Prof. Sarah Köster from the Institute for X-Ray Physics of the University of Göttingen (Germany). The researchers published their findings on February 25, 2014, in the scientific journal Physical Review Letters.

Due to newly developed analytic methods with ever-higher resolution, scientists now can study biologic cells at the level of individual molecules. The cells are frequently chemically fixed before they are studied with the help of optical X-ray or electron microscopes. The process of chemical fixation involves immersing the cells in a type of chemical preservative that fixes all of the cell’s organelles and even the proteins in place. “Minor changes to the internal structure of the cells are unavoidable in this process,” stated Prof. Köster. “In our studies, we were able to show these changes in direct comparison for the first time.”

The scientists used cancer cells from the adrenal cortex for their study. They grew the cells on a silicon nitrite substrate, which is nearly transparent to X-rays. To keep the cells alive in the experimental chamber during the research, they were supplied with nutrients, and their metabolic products were driven away via fine channels only 0.5 mm in diameter. “The biological cells are thus located in a sample environment which very closely resembles their natural environment,” explained Dr. Britta Weinhausen from Prof. Köster’s group, the article’s first author.

The research was performed at the Nanofocus Setup (GINIX) of PETRA III’s experimental station P10. The scientists used the brilliant X-ray beam from PETRA III to scan the cells to gather data about their internal nanostructure. “Each frame was exposed for just 0.05 seconds, in order to avoid damaging the living cells too quickly,” clarified coauthor Dr. Michael Sprung from DESY. “Even nanometer-scale structures can be measured with the GINIX assembly, thanks to the combination of PETRA III’s high brilliance and the GINIX setup which is matched to the source.”

The researchers studied living and chemically fixed cells using this so-called nanodiffraction technique and compared the cells’ internal structures on the basis of the X-ray diffraction images. The results showed that the chemical fixation produces noticeable differences in the cellular structure on a scale of 30–50 nm.

“Thanks to the ever-greater resolution of the various investigative techniques, it is increasingly important to know whether the internal structure of the sample changes during sample preparation,” clarified Prof. Köster.

In the future, this new technology will make it possible to examine unchanged living cells at high resolution. Although other techniques have an even higher resolution than X-ray scattering, they require a chemical fixation or complex and invasive preparation of the cells. Lower-energy, so-called soft X-rays have already been used for studies of living cells. However, the study of structures with sizes as small as 12 nm first becomes possible through the analysis of diffraction images generated using hard X-rays.

Related Links:

Deutsches Elektronen-Synchrotron DESY
Institute for X-Ray Physics of the University of Göttingen



New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Collection and Transport System
PurSafe Plus®
New
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
New
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.