We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Chronic Anemia Cured by Gene Therapy Using Genetically Engineered Blood Vessels

By LabMedica International staff writers
Posted on 29 Nov 2011
A novel gene therapeutic method employing genetically engineered blood vessels to deliver erythropoietin (EPO) to anemic mice was described in a proof-of-concept study.

Investigators at Harvard Medical School (Boston, MA, USA) created a new type of blood vessel by isolating endothelial colony-forming cells from human blood and then inserting into these cells the gene that encodes EPO. More...
The gene that was inserted was part of a complex that included an “off/on switch” activated by the drug doxycycline.

The genetically engineered colony-forming cells were injected under the skin of immunodeficient mice that had been rendered anemic by radiation treatment (as often occurs in cancer patients) or through loss of kidney tissue (modeling chronic kidney failure).

Results published in the November 17, 2011, issue of the journal Blood revealed that the transplanted cells spontaneously formed networks of blood vessels that became integrated into the animals' own circulatory system. EPO produced by the genetically engineered cells was then released directly into the bloodstream. EPO production could be controlled by administrating or withholding doxycycline.

“Blood-vessel implants are an ideal platform technology for gene therapy applications whose goal is systemic drug delivery,” said senior author Dr. Juan M. Melero-Martin, assistant professor of surgery at Harvard Medical School. “Blood vessels are one of the few tissues where we have good control over engraftment. Endothelial cells are easily isolated from blood, are good at assembling themselves into blood vessels, and are ideal for releasing compounds into the bloodstream, since they line the blood vessels.”

“Such drugs are currently made in bioreactors by engineered cells, and are very expensive to make in large amounts. The paradigm shift here is, why we do not instruct your own cells to be the factory?” said Dr. Melero-Martin.

If this approach can be applied in humans, it would relieve patients from having to receive frequent EPO injections, thus reducing the medical costs associated with the management of anemia.

Related Links:
Harvard Medical School


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Laboratory Software
ArtelWare
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Immunology

view channel
Image: The simple blood marker can predict which lymphoma patients will benefit most from CAR T-cell therapy (Photo courtesy of Shutterstock)

Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy

CAR T-cell therapy has transformed treatment for patients with relapsed or treatment-resistant non-Hodgkin lymphoma, but many patients eventually relapse despite an initial response. Clinicians currently... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.