We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Antibody Therapy Prevents Diabetes in Mice

By Biotechdaily staff writers
Posted on 19 Jan 2007
Investigators have effectively prevented the onset of type 1 diabetes in laboratory mice prone to developing the disease using an antibody against a receptor on the surface of immune T-cells. More...


According to the investigators, from the University of Pittsburgh (Pitt; PA, USA), these results, which were published in the January 2007, issue of the journal Diabetes, have significant implications for the prevention of type 1 diabetes.

Type 1 diabetes is an autoimmune disorder in which the body errantly attacks the insulin-producing cells of the pancreas, causing chronically elevated levels of glucose in the blood, which can lead to blindness, kidney failure, heart disease, and nerve damage. Previously known as juvenile diabetes, type 1 diabetes is typically diagnosed at a very early age, but in some instances it can be diagnosed in adult hood.

In this study, the Pitt researchers treated non-obese diabetic (NOD) mice with an antibody--a type of protein generated by the immune system that recognizes and helps combat infections and other foreign substances in the body--directed against a receptor known as CD137 on the surface of a type of immune cell called T-cells. Treating NOD mice with the anti-CD137 antibodies considerably inhibited the development of diabetes, whereas most of the control mice developed diabetes by the time they were six months old. Surprisingly, the antibody therapy did not appear to cure the NOD mice because the researchers were still able to see lymphocytes in their pancreatic islets, a characteristic sign of pancreatic inflammation and autoimmunity. Furthermore, when the researchers isolated cells from the spleens of the antibody-treated mice and injected these cells into immune-deficient NOD mice, seven of the nine recipient mice developed type 1 diabetes, indicating that the donor mice still harbored pathogenic T-cells. However, when the researchers transferred a specific subset of T-cells from anti-CD137-treated mice that expressed two other receptors known as CD4 and CD25 to other immune-deficient NOD mice, it prevented the onset of diabetes in the recipient mice.

According to senior author William M. Ridgway, M.D., assistant professor in the University of Pittsburgh, School of Medicine's department of rheumatology and clinical immunology, this therapy, if given early enough, may offer an effective method for preventing the onset of type 1 diabetes in genetically at-risk individuals.

"Our studies and others suggest that CD137 plays a significant role in the development of and genetic predisposition to type 1 diabetes. In this study, for the first time, we have demonstrated that CD137 antibody therapy can suppress the development of type 1 diabetes in mice and that the effect is dependent on the induction of a certain subset of regulatory T-cells. If we can demonstrate this same genetic predisposition and therapeutic effect in human type 1 diabetes patients, then this may prove to be a significant step toward preventing this disease before it can take hold,” he explained.



Related Links:
University of Pittsburgh

Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated MALDI-TOF MS System
EXS 3000
Pipette
Accumax Smart Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The POC diagnostic test aims to use fingerstick blood, serum, or plasma sample to detect typhoid fever (Photo courtesy of Adobe Stock)

POC Test Uses Fingerstick Blood, Serum, Or Plasma Sample to Detect Typhoid Fever

Typhoid fever is an acute febrile illness caused by Salmonella enterica serovar Typhi (S. Typhi) and affects an estimated 11–21 million people globally each year, resulting in approximately 128,000–161,000... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Industry experts gather at WHX Labs Dubai to discuss how leadership must adapt as AI and automation transform the laboratory (Photo courtesy of Shutterstock)

WHX Labs in Dubai spotlights leadership skills shaping next-generation laboratories

WHX Labs in Dubai (formerly Medlab Middle East), held at Dubai World Trade Centre (DWTC) from 10–13 February, brings together international experts to discuss the factors redefining laboratory leadership,... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.