We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Hybrid Molecule Induces Cancer Cells to Self-Destruct

By Biotechdaily staff writers
Posted on 19 Jan 2007
By binding a glucose molecule to a short-chain fatty acid compound, researchers have developed a two-pronged molecular weapon that destroys cancer cells in laboratory tests. More...


The researchers, from Johns Hopkins University (Baltimore, MD, USA), cautioned that their double-punch molecule has not yet been evaluated on animals or humans. Nevertheless, they believe it may be a promising new approach for fighting the lethal disease. The study was published in the December 2006 issue of the journal Chemistry & Biology.

"For a long time, cancer researchers did not pay much attention to the use of sugars in fighting cancer,” said Dr. Gopalan Sampathkumar, a postdoctoral fellow in the university's department of biomedical engineering, and lead investigator of the study. "But we found that when the right sugar is matched with the right chemical partner, it can deliver a powerful double-whammy against cancer cells.”

Dr. Sampathkumar and his colleagues built upon 20-year-old findings that a short-chain fatty acid called butyrate has been shown to slow the metastasis of cancer cells. In the 1980s, researchers found that butyrate, which is formed naturally at high levels in the digestive system by symbiotic bacteria that feed on fiber, can restore healthy cell functioning.

Efforts to utilize butyrate as a general drug for tumors elsewhere in the body, however, have been hindered by the high doses of the compound needed to effectively eradicate cancer. To tackle this problem, scientists have tried to make butyrate more powerful by modifying it or binding it to other compounds. Typically, the results have been disappointing because the molecular partner added to butyrate to improve delivery to the cancer cells frequently produced debilitating side effects.

In some of the less successful experiments designed to avoid toxic side effects, investigators used innocuous sugar molecules such as glucose to carry butyrate into the cells. The Johns Hopkins team tried a different avenue. "We didn't think they chose the right partner molecule,” said Dr. Kevin J. Yarema, an assistant professor of biomedical engineering who supervised the project. "Our insight was to select the sugar partner to serve not just as a passive carrier but as additional ammunition in the fight against cancer.”

The researchers focused on a glucose molecule called N-acetyl-D-mannosamine (ManNAc). The team devised a hybrid molecule by linking ManNAc with butyrate. The hybrid easily penetrates a cell's surface, where it is split apart by enzymes inside the cell. Once inside the cell, ManNAc is processed into another sugar known as sialic acid, which plays a vital role in cancer biology, while butyrate controls the expression of genes responsible for halting the uncontrolled growth of cancer cells.

Although the study of the precise molecular process is still in its early stages, the researchers believe the separate chemical components work together to enhance the cancer-fighting power of butyrate. This double-punch triggers cellular suicide, known as apoptosis, in the cancer cells.

To determine whether this butyrate-ManNAc hybrid alone would produce the positive results, the researchers assessed three other sugar-butyrate combinations and a butyrate salt compound with no glucose molecule attached. The four other compounds and the butyrate-ManNAc hybrid were each added to lab dishes containing cancer cells. After three to five days, cancer growth had slowed in all of the dishes. After 15 days, however, cancer growth had resumed in dishes treated with four of the compounds. But in samples treated with the butyrate-ManNAc hybrid, all of the cancer cells had died.

The researchers also tried to determine whether administering the two parts of the hybrid independently would achieve the same result. But in these experiments, the cancer cells did not self-destruct. The researchers believe this is because the hybrid molecules more easily penetrate the surface of the cell than the individual compounds. Once the components are inside, the researchers believe the partners help enzymes to resume the normal assembly of sugar molecules and correct aberrant gene expression patterns, two processes that go out of control when cancer occurs.

Now that they have identified the butyrate-ManNAc molecule as a potential anti-cancer agent, the Johns Hopkins researchers are expanding their study, looking for new drug-delivery techniques and preparing for animal testing. The researchers believe the hybrid molecule will have minimal effect on healthy cells. Through the Johns Hopkins Technology Transfer Office, they have filed an application for a U.S. patent covering this class of compounds.



Related Links:
Johns Hopkins University

Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The POC diagnostic test aims to use fingerstick blood, serum, or plasma sample to detect typhoid fever (Photo courtesy of Adobe Stock)

POC Test Uses Fingerstick Blood, Serum, Or Plasma Sample to Detect Typhoid Fever

Typhoid fever is an acute febrile illness caused by Salmonella enterica serovar Typhi (S. Typhi) and affects an estimated 11–21 million people globally each year, resulting in approximately 128,000–161,000... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Industry experts gather at WHX Labs Dubai to discuss how leadership must adapt as AI and automation transform the laboratory (Photo courtesy of Shutterstock)

WHX Labs in Dubai spotlights leadership skills shaping next-generation laboratories

WHX Labs in Dubai (formerly Medlab Middle East), held at Dubai World Trade Centre (DWTC) from 10–13 February, brings together international experts to discuss the factors redefining laboratory leadership,... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.