We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App





First-of-Its-Kind Single-Cell Clinical Microbiology Platform Wins 2023 Disruptive Technology Award

By LabMedica International staff writers
Posted on 27 Jul 2023

Pattern Bioscience, Inc. More...

(Austin, TX, USA) has won the 2023 Disruptive Technology Award for its ground-breaking single-cell microbiology technology at the AACC Annual Scientific Meeting. The Disruptive Technology Award competition from ADLM honors innovative testing solutions and disruptive technologies that enhance patient care via diagnostic performance or improved access to high-quality testing. The finalists demonstrated their technologies live at the Disruptive Technology Award session during the event, with the winner being chosen by expert judges and announced at the session's conclusion.

Pattern has designed a novel culture-free test that rapidly identifies infection-causing pathogens and assesses their susceptibility to antibiotics. The test utilizes a fusion of single-cell analysis and AI to directly evaluate individual bacterial cells' responses to antibiotics, aiding healthcare teams in making informed decisions about antimicrobial therapy. Unlike PCR or sequence-based methods that evaluate genetic targets linked to resistance, Pattern’s technology directly measures the response of bacterial cells to antibiotics, thereby determining exactly which agents can be employed for therapy. This process is similar to standard-of-care culture methods, but significantly faster.

The single-cell microbiology technology developed by Pattern is capable of testing directly from complex clinical specimens, including non-sterile body sites where normal microbiota often coexists with pathogens. This unique ability to test directly from polymicrobial specimens stems from its single-cell isolation approach. The technology bypasses the traditional agar plate-based colony isolation process by encapsulating individual bacterial cells (or colony-forming units) in isolated picoliter-volume "culture droplets," creating an array of single-cell isolates. This critical process separates the antibiotic response of each bacteria type in the sample, enabling Pattern to deconvolve the antibiotic susceptibilities of multiple bacterial species. As such, Pattern’s technology is the first and only emerging technology capable of comprehensively diagnosing pneumonia directly from a clinical specimen, leading to the FDA granting the company’s Pneumonia ID/AST Panel a Breakthrough Device Designation.

Related Links:
Pattern Bioscience, Inc.


Gold Member
Serological Pipets
INTEGRA Serological Pipets
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gel Cards
DG Gel Cards
New
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.