We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Events

10 Feb 2026 - 13 Feb 2026
17 Apr 2026 - 21 Apr 2026

Mitochondrial DNA Fragments in Blood Could Be Important Biomarkers for Aging and Inflammation

By LabMedica International staff writers
Posted on 26 Jun 2023

Chronic inflammation has been proven to lead to frailty symptoms, memory loss, and other cognitive declines over time. More...

High levels of circulating cell-free genomic DNA (ccf-gDNA), or DNA fragments created due to cell death, in the blood, have been linked with chronic inflammation and frailty. Earlier studies primarily considered ccf-gDNA as a potential biomarker for the cognitive and physical decline associated with aging. Comparable to ccf-gDNA, mitochondrial DNA (ccf-mtDNA) — DNA that is inherited maternally — can be located in cell organelles and is often referred to as the "power plants" within the cells of humans, other animals, plants, and most organisms. Upon natural programmed cell death (apoptosis), mitochondrial DNA is fragmented and left to circulate in the blood, similar to genomic DNA. Large fragments of mitochondrial DNA can trigger chronic inflammation — an immune response similar to the body's reaction to bacteria and viruses — if a traumatic event such as injury, interrupted blood flow, or disease causes cell death. A novel study has now further correlated levels of circulating cell-free DNA in the blood with chronic inflammation and frailty by focusing on mitochondrial DNA rather than solely genomic DNA.

The new findings by researchers at Johns Hopkins Medicine (Baltimore, MD, USA) support the notion that relatively high levels of DNA fragments in routine blood samples could serve as precise and valuable biomarkers, or indicators, for a broad spectrum of cognitive and physical declines. The analysis also discovered relationships between these DNA fragments and the presence of other established aging biomarkers, such as cytokine proteins, tumor necrosis factors (proteins produced by the immune system in response to tumor growth), and proteins generated by the liver during inflammation. For this study, the research team analyzed blood samples taken from 672 community-dwelling men and women in the mid-1990s, who had an average age of 80 at the start of the study period. These participants were selected from three cohort studies.

All the participants underwent annual physical and cognitive testing at the time of each blood draw, which included memory, perception, and physical tests for grip strength, gait, fatigue, and motor function. The researchers then compared levels of long and short CCF-mtDNA fragments against four established biomarkers of inflammation: cytokine proteins, two types of tumor necrosis factors, and inflammatory liver proteins. The results revealed significant correlations between these four biomarkers and increased levels of CCF-mtDNA. For instance, if a patient's blood sample had high levels of one or more of these known inflammation biomarkers, the sample also had high levels of CCF-mtDNA. Additionally, the researchers found that while high levels of circulating genomic DNA were associated with cognitive and physical decline, high levels of mitochondrial DNA were more strongly linked to physical decline only. The researchers plan to extend their studies to younger adults in order to determine the earliest time these cell-free DNA fragments become significant in blood samples. Moreover, they aim to decipher precisely how these DNA fragments contribute to inflammation and explore possible interventions before they precipitate cognitive and physical decline.

“By expanding the types of DNA screened for in the blood, the new research has expanded efforts to better understand and predict physical and cognitive declines that come with aging,” says Peter Abadir, M.D., associate professor of geriatric medicine and gerontology at the Johns Hopkins University School of Medicine.

Related Links:
Johns Hopkins Medicine 


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Silver Member
PCR Plates
Diamond Shell PCR Plates
Laboratory Software
ArtelWare
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.