We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




System Separates Circulating Tumor Cells from Blood Samples, Improves Cancer Diagnostics

By LabMedica International staff writers
Posted on 01 Jul 2022
Print article
Image: A new machine rapidly and robustly separates cancer cells from blood samples (Photo courtesy of DGIST)
Image: A new machine rapidly and robustly separates cancer cells from blood samples (Photo courtesy of DGIST)

Circulating tumor cells are cells that break off from cancers and are released into the blood stream. They can go on to form the seeds for new tumor formation in other parts of the body, known as metastases. The advantage of isolating them from the blood is that they represent the diversity of cancer cells found in a person’s body and identifying them could lead to more targeted therapies. But current techniques used to do this either miss some types of circulating tumor cells or are done manually, which takes a lot of time and specialized training. Now, a new approach can successfully and rapidly isolate rare circulating tumor cells from patient blood samples. The findings could help improve cancer diagnosis and the ability to provide targeted and personalized treatments.

The fully automated centrifugation approach developed by scientists at Daegu Gyeongbuk Institute of Science and Technology (DGIST, Daegu, Korea) and CTCELLS (Daegu, Korea) is called Continuous Centrifugal Microfluidics – Circulating Tumor Cell Disc (CCM-CTCD). It involves placing a tube containing a blood sample in a machine with a spinning disc. The spinning, or centrifugal force, causes the blood to separate into layers containing different components, with the heavier red blood cells dropping to the bottom, lighter cells floating in a middle layer, and plasma settling at the top.

After the disc begins to spin, a laser motor starts rotating at the same angular velocity and phase. This crucial step allows a laser to move and open a valve in the blood sample tube while the disc continues to spin, maintaining a thin layer of tumor and white blood cells, which are released into a separate chamber. The chamber contains antibodies that specifically attach to and separate white blood cells from the mixture. This allows the circulating tumor cells in the mixture to flow on their own into a final chamber.

The team went on to identify the different types of tumor cells and confirm by subsequent DNA testing that they represent the full diversity of different types of cells in the blood sample. They also used the technique on blood samples from patients with varying stages of lung cancer and found the number of circulating tumor cells in a sample correlated with the stage of disease progression. Identification of the types of tumor cells also allowed them to modify treatment strategies. The team is now working on commercializing the technique for clinical use and hopes to expand its application to isolate other types of cells, including nerve, stem and immune cells.

“Our smart and practical approach realizes a big dream in the field of liquid biopsy and demonstrates high performance across a wide range of cell types and different cancers with full automation,” said Minseok S. Kim at the Department of New Biology at DGIST.

Related Links:
DGIST 
CTCELLS 

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Rickettsia Conorii Assay
RICKETTSIA CONORII ELISA

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.