We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Estimated Total Tumor mRNA Predicts Cancer Outcomes

By LabMedica International staff writers
Posted on 20 Jun 2022
Print article
Image: Oncotype DX ​Specimen Collection and Transportation Kit (Photo courtesy of Genomic Health, Inc)
Image: Oncotype DX ​Specimen Collection and Transportation Kit (Photo courtesy of Genomic Health, Inc)

Single-cell RNA (scRNA) sequencing studies have suggested that total mRNA content correlates with tumor phenotypes. Technical and analytical challenges, however, have so far impeded at-scale pan-cancer examination of total mRNA content.

Recent single-cell studies revealed that expansion of cell state heterogeneity in cancer cells arises largely independently of genetic variation, bringing new conceptual insights into longstanding topics of cancer cell plasticity and cancer stem cells. Knowledge of marker genes across cancers, total mRNA expression per tumor cell may represent a robust and measurable pan-cancer feature that warrants a systematic evaluation in patient cohorts.

A large international team of medical scientists led by MD Anderson Cancer Center (Houston, TX, USA) developed a method to quantify tumor-specific total mRNA expression (TmS) from bulk sequencing data, taking into account tumor transcript proportion, purity and ploidy, which are estimated through transcriptomic/genomic deconvolution. The team collected scRNA-seq data from ten patients, comprising three with colorectal adenocarcinoma, three with hepatocellular carcinoma, two with lung adenocarcinoma and two with pancreatic adenocarcinoma.

The investigators used a surrogate measure for total mRNA, and they found that cells with higher total mRNA counts were less differentiated, exhibiting a "stem-like" cell state, and were enriched in genes associated with stemness and epithelial-mesenchymal transition. The group developed a mathematical method for deconvoluting bulk DNA and RNA sequencing data to yield a quantitative metric, TmS, representing the per-cell, per-haploid genome total RNA expression for a tumor. They found that higher tumor-specific mRNA levels correlated with reduced progression-free survival and overall survival by taking that metric to a data set of 6,590 tumor samples from four large patient cohorts linked with long-term outcomes data.

The team observed an unexpected inversion of the relationship between TmS and outcome in four of the 12 cancer types they investigated based on the stage of the disease, including breast cancer subtypes. In those cancers, early-stage patients with high TmS levels had more favorable outcomes, possibly because the prognostic effect of TmS was modified by treatment. They found that high TmS was associated with increased disease-free survival in patients with ER-positive, HER2-negative breast cancer, even after adjusting for chemotherapy and Oncotype Dx risk status (Genomic Health, Inc, Redwood City, CA, USA.

Wenyi Wang, PhD, a professor and senior author of the study, said, “Across all 15 cancer types, we did find consistent signals that high levels of total mRNA expression in tumor cells correspond to a worse prognosis.” The study was published on June 13, 2022 in the journal Nature Biotechnology.

Related Links:
MD Anderson Cancer Center
Genomic Health, Inc

New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Unit-Dose Packaging solution
HLX
New
PoC Testing Device
QuikRead
New
Vedolizumab ELISA
RIDASCREEN VDZ Monitoring

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The inbiome molecular culture ID technology has received FDA breakthrough device designation (Photo courtesy of inbiome)

Revolutionary Molecular Culture ID Technology to Transform Bacterial Diagnostics

Bacterial infections pose a major threat to public health, contributing to one in five deaths worldwide. Current diagnostic methods often take several days to provide results, which can delay appropriate... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: The GeneXpert system’s fast PCR Xpert tests can fight AMR and superbugs with fast and accurate PCR in one hour (Photo courtesy of Cepheid)

Cepheid Partners with Fleming Initiative to Fight Antimicrobial Resistance

Antimicrobial resistance (AMR) is responsible for over one million deaths globally each year and poses a growing challenge in treating major infectious diseases like tuberculosis, Escherichia coli (E.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.