We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




World’s First Biomarker Can Diagnose Parkinson's Disease from Blood Serum Samples

By LabMedica International staff writers
Posted on 30 May 2022

Parkinson’s disease is the second most common neurodegenerative disease in the world and believed to affect around 1-2% of the over 60s population. More...

Furthermore, it is predicted to cost the global market USD 20 billion (including treatment costs) in 2030. Currently, there is no way of completely curing Parkinson’s disease. Therefore, early detection is vital in order to stop its progression. Currently, various biomarkers are in development that can be used to evaluate diseases. These biomarkers can detect the presence of a disease, as well as monitor its progress and the effectiveness of treatment. In a world-first, researchers have succeeded in developing a biomarker that can be used to easily and inexpensively assess Parkinson’s disease.

The drug metabolizing enzyme Cytochrome P450 not only metabolizes drugs but also serves as a catalyst for the oxidation of various substances. It is known that the expression of P450 inside the body changes with the onset of various diseases. This change in P450 expression is thought to affect the quantity and quality of metabolites in the patient’s body that are related to P450. A group of researchers at Kobe University (Kobe, Japan) and Hiroshima University (Higashihiroshima, Japan) had previously come up with a ‘P450 inhibition assay’ to easily detect changes in the quality and quantity of P450-related metabolites brought on by the onset of disease. This time, they have become the first in the world to successfully apply this method to Parkinson’s disease diagnosis.

In the developed assay, 12 different human P450s are each mixed with a serum sample and a fluorescent substrate to cause a reaction. There are differences in quantity and quality of P450-related metabolites in the sera from healthy individuals and patients. These serum metabolites inhibit the P450-mediated oxidation of the fluorescent substrate. By looking at the inhibition rate related to disease onset-mediated alterations in certain P450s, it is possible to discriminate sera samples from an individual with a specific disease and a healthy subject. P450 reacts with the fluorescent substrate to generate a fluorescent substance when the assay is performed on the sera from healthy individuals. However, the reaction is different when the assay is conducted on the sera from patients and thus the obtained fluorescent values change. In this way, the ‘P450 fluorescent inhibition assay’ can be used to determine whether or not a disease is present by detecting these changes. It is a new liquid biopsy technique that did not exist until now.

The current study on Parkinson’s disease utilized the ‘P450 inhibition assay’ that was independently developed by the research group. Specifically, they carried out the assay on Parkinson’s disease model rats and on human patients with the disease (as well as patients with other neurodegenerative and inflammatory diseases) to evaluate whether or not the assay could be used for Parkinson’s disease diagnosis. The results revealed that healthy individuals and individuals with Parkinson’s disease could be classified at an accuracy rate of 85~88% for both the model rat and human subjects.

Thus, the results of the study have shown that the ‘P450 inhibition assay’ has the potential to be applied to the diagnosis of Parkinson’s disease. This assay only requires mere 30μ of serum and is a comparatively inexpensive testing method and therefore, will benefit Parkinson’s disease screening. Next, the researchers will conduct clinical performance evaluations on a larger scale, with the aim of working towards the implementation of this testing method.

Related Links:
Kobe University
Hiroshima University 


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Automated PCR Setup
ESTREAM
New
Pan-Cancer Panel
TruSight Oncology 500
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment (Photo courtesy of MIT)

New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more

Pathology

view channel
Image: Micrograph showing the distribution of misfolded proteins in myeloma cells (Photo courtesy of Helmholtz Munich)

Novel Method Tracks Cancer Treatment in Cells Without Dyes or Labels

Multiple myeloma is a blood cancer that affects plasma cells in the bone marrow, leading to abnormal protein production, weakened immunity, and organ damage. Traditional methods for evaluating myeloma... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.