We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




New Rapid Test Reports Antibiotic Resistance in Two Hours

By LabMedica International staff writers
Posted on 28 Mar 2018
Print article
Image: The Lab-on-a-Chip system used with Raman spectroscopy to identify antibiotic resistance (Photo courtesy of Leibniz-Institute of Photonic Technology).
Image: The Lab-on-a-Chip system used with Raman spectroscopy to identify antibiotic resistance (Photo courtesy of Leibniz-Institute of Photonic Technology).
Resistant bacteria are spreading worldwide, which makes fast antibiotic susceptibility testing and determination of the minimal inhibitory concentration (MIC) urgently necessary to select appropriate antibiotic therapy in time.

The often unnecessary and mass use of antibiotics causes the resistance of pathogens against drugs and infections that were easily curable up to now may become life threatening. A new rapid test will give information on which available antibiotics are still effective and faster diagnostics allows for personalized therapy and saves lives.

Scientists at the Jena University Hospital (Jena, Germany) and their colleagues have developed a simple and fast Raman spectroscopy-based procedure to identify antimicrobial susceptibilities and determine the MIC within only two hours total analysis, marking a huge time savings compared to established phenotypic methods nowadays used in diagnostics.

The sample preparation was fast and easy as well as comparable to currently established tests. The use of a dielectrophoresis chip allows automated collection of the bacteria in a micron-sized region for high-quality Raman measurement directly from bacterial suspensions. The new Raman spectroscopic MIC test was validated with 13 clinical Escherichia coli isolates that show a broad range of ciprofloxacin resistance levels and were collected from patients with blood-stream infection.

Micro-Raman spectroscopy was able to detect ciprofloxacin-induced changes in E. coli after only 90 minutes interaction time. Principal component analysis as well as a simple computed ratio of the Raman marker bands at 1458 and 1485 cm–1 showed a clear concentration-dependent effect. The MIC values determined with the new Raman method are in good agreement with MICs obtained by reference methods such as broth microdilution, Vitek-2 and E-test and can be used to provide a classification as sensitive, intermediate, or resistant.

Ute Neugebauer, PhD, a professor of Physical Chemistry and senior author of the study said, “We combine light-based analytical methods with microfluidic sample processing. With our Lab-on-a-Chip system, thus a miniaturized lab, we are able to clearly identify bacterial strains and their resistances, in less than three hours.” The study was published in the February 2018 issue of the journal Analytical Chemistry.

Related Links:
Jena University Hospital

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.