We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Virulence of Bacillus Anthracis Depends on Blood Bicarbonate

By LabMedica International staff writers
Posted on 08 Dec 2008
Scientists have identified bicarbonate as the human blood component that causes the Gram-positive bacteria, Bacillus anthracis, to become virulent.

Bicarbonate is a chemical found in all body fluids and organs that play a major role in maintaining the pH balance in cells, and it provides the signal for B. More...
anthracis to unleash its virulence factors. Without the presence of the bicarbonate transporter in the bloodstream, the bacteria do not become virulent. This finding opens up new avenues of exploration for the development of treatments for other bacterial infections.

The major cause in the increase of community and hospital- acquired bacterial infections are Gram-positive bacteria. The U.S. Centers for Disease Control and Prevention (CDC; Atlanta, GA, USA estimates that as many as 10 % of all patients, or about 2 million people, contract nosocomial infections each year. These bacteria are often resistant to multiple antibiotics, making the problem a growing public health concern and the need for new antibacterial treatment more urgent.

Scripps Research Institute (La Jolla CA, USA) associate professor Marta Perego, Ph.D. and colleagues identified a previously unknown adenosine triphosphate (ATP)-binding cassette transporter (ABC-transporter)--which is identified by the gene number BAS2714-12--that was essential to transporting bicarbonate. ABC-transporters use the energy of ATP hydrolysis to transport various substrates across cellular membranes. When the genes that code for the BAS2714-12 ABC transporter were deleted, the rate of bicarbonate uptake inside the cell greatly decreased, induction of toxin gene expression did not occur, and virulence in an animal model of infection was abolished.

Elimination of carbon dioxide production within the bacterial cell had no effect on toxin production, suggesting that CO2 activity is not essential to virulence factor induction and that bicarbonate, not CO2, was the signal essential for virulence induction.

This finding is significant because other pathogenic bacteria such as Streptococcus pyogenes, Escherichia coli, Borrelia burgdorferi, and Vibrio cholerae have bicarbonate transport pathways similar to B. anthracis and possibly have similar virulence triggering mechanisms.

The study was published in the November 21, 2008 edition of the journal PLoS Pathogens.

Related Links:
U.S. Centers for Disease Control and Prevention
Scripps Research Institute



New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Rapid Molecular Testing Device
FlashDetect Flash10
New
Silver Member
Quality Control Material
NATtrol Chlamydia trachomatis Positive Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The ONC IN-CYT platform leverages cross indication biomarker cyto-signatures (Photo courtesy of OraLiva)

AI-Powered Cytology Tool Detects Early Signs of Oral Cancer

Each year, 54,000 Americans are diagnosed with oral cancer, yet only 28% of cases are identified at an early stage, when the five-year survival rate exceeds 85%. Most diagnoses occur in later stages, when... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: PD-1 protein blockade is the standard treatment for advanced melanoma among the different types of immunotherapy (Photo courtesy of 123RF)

Precision Tool Predicts Immunotherapy Treatment Failure in Melanoma Patients

Melanoma, though accounting for only about 4% of skin tumors, is the deadliest form of skin cancer due to its high potential to metastasize. While immunotherapy, especially PD-1 protein blockade, has revolutionized... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.