Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Virulence of Bacillus Anthracis Depends on Blood Bicarbonate

By LabMedica International staff writers
Posted on 08 Dec 2008
Scientists have identified bicarbonate as the human blood component that causes the Gram-positive bacteria, Bacillus anthracis, to become virulent.

Bicarbonate is a chemical found in all body fluids and organs that play a major role in maintaining the pH balance in cells, and it provides the signal for B. More...
anthracis to unleash its virulence factors. Without the presence of the bicarbonate transporter in the bloodstream, the bacteria do not become virulent. This finding opens up new avenues of exploration for the development of treatments for other bacterial infections.

The major cause in the increase of community and hospital- acquired bacterial infections are Gram-positive bacteria. The U.S. Centers for Disease Control and Prevention (CDC; Atlanta, GA, USA estimates that as many as 10 % of all patients, or about 2 million people, contract nosocomial infections each year. These bacteria are often resistant to multiple antibiotics, making the problem a growing public health concern and the need for new antibacterial treatment more urgent.

Scripps Research Institute (La Jolla CA, USA) associate professor Marta Perego, Ph.D. and colleagues identified a previously unknown adenosine triphosphate (ATP)-binding cassette transporter (ABC-transporter)--which is identified by the gene number BAS2714-12--that was essential to transporting bicarbonate. ABC-transporters use the energy of ATP hydrolysis to transport various substrates across cellular membranes. When the genes that code for the BAS2714-12 ABC transporter were deleted, the rate of bicarbonate uptake inside the cell greatly decreased, induction of toxin gene expression did not occur, and virulence in an animal model of infection was abolished.

Elimination of carbon dioxide production within the bacterial cell had no effect on toxin production, suggesting that CO2 activity is not essential to virulence factor induction and that bicarbonate, not CO2, was the signal essential for virulence induction.

This finding is significant because other pathogenic bacteria such as Streptococcus pyogenes, Escherichia coli, Borrelia burgdorferi, and Vibrio cholerae have bicarbonate transport pathways similar to B. anthracis and possibly have similar virulence triggering mechanisms.

The study was published in the November 21, 2008 edition of the journal PLoS Pathogens.

Related Links:
U.S. Centers for Disease Control and Prevention
Scripps Research Institute



New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
Portable Electronic Pipette
Mini 96
Hemodynamic System Monitor
OptoMonitor
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: When assessing the same lung biopsy sample, research shows that only 18% of pathologists will agree on a TCMR diagnosis (Photo courtesy of Thermo Fisher)

Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection

Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.