We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

02 Jun 2025 - 04 Jun 2025
11 Jun 2025 - 13 Jun 2025

AI Predicts Tumor-Killing Cells with High Accuracy

By LabMedica International staff writers
Posted on 16 May 2024

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body. More...

T cells, a primary type of white blood cell or lymphocyte, circulate in the blood and monitor for virally infected or cancerous cells. Among these, T cells that infiltrate solid tumors are known as tumor-infiltrating lymphocytes, or TILs. However, not all TILs effectively recognize and attack tumor cells. To address this, scientists have now employed artificial intelligence (AI) to create a predictive model that can identify the most effective TILs for use in cancer immunotherapy.

The new AI-driven predictive model, called TRTpred developed by scientists at Ludwig Cancer Research (New York, NY, USA) ranks T cell receptors (TCRs) according to their tumor reactivity. To create TRTpred, the researchers utilized 235 TCRs from patients with metastatic melanoma, already categorized as tumor-reactive or non-reactive. They input the global gene-expression profiles of the T cells harboring each TCR into a machine learning model to identify patterns distinguishing tumor-reactive T cells from their inactive counterparts. This model, enhanced with additional algorithms, supports personalized cancer treatments tailored to the unique cellular composition of each patient’s tumors.

The TRTpred model was used to analyze TILs from 42 patients with melanoma, gastrointestinal, lung, and breast cancer, pinpointing tumor-reactive TCRs with about 90% accuracy. The selection process was further refined using a secondary algorithmic filter to isolate those T cells with “high avidity”—meaning they bind strongly to tumor antigens. It was observed that T cells identified by TRTpred and this secondary filter as both tumor-reactive and high avidity were predominantly located within the tumors rather than in the surrounding stromal tissue. This aligns with previous studies suggesting that effective T cells often deeply penetrate tumor islets.

A third filter was then introduced to enhance the identification of TCRs recognizing a diverse array of tumor antigens. This filter groups TCRs based on similar physical and chemical characteristics, assuming TCRs in each group recognize the same antigen. This enhanced system, named MixTRTpred, was then tested by growing human tumors in mice, extracting TCRs from their TILs, and employing MixTRTpred to identify T cells that were tumor-reactive, had high avidity, and targeted multiple tumor antigens. The researchers then engineered mouse T cells to express these TCRs and demonstrated that these modified cells could effectively eradicate tumors when reintroduced into the mice.

“The implementation of artificial intelligence in cellular therapy is new and may be a game-changer, offering new clinical options to patients,” said Ludwig Lausanne’s Alexandre Harari, who led the study published on May 7, 2024 in Nature Biotechnology.

Related Links:
Ludwig Cancer Research


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Glucose Tolerance Test
NERL Trutol
New
Biochemistry Analyzer
Chemi+ 8100
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: New biomarkers could someday make it easy to spot Parkinson’s disease in a patient’s blood sample (Photo courtesy of Shutterstock)

Unique Blood-Based Genetic Signature Can Diagnose Parkinson’s Disease

Parkinson's disease is primarily recognized for its impact on the central nervous system. Recent scientific progress has shifted focus to understanding the involvement of the immune system in the onset... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Pathology

view channel
Image: The new tool is designed for accurate detection of structural variations in clinical samples (Photo courtesy of Karen Arnott/EMBL-EBI and Isabel Romero Calvo/EMBL)

ML Algorithm Accurately Identifies Cancer-Specific Structural in Long-Read DNA Sequencing Data

Long-read sequencing technologies are designed to analyze long, continuous stretches of DNA, offering significant potential to enhance researchers' abilities to detect complex genetic changes in cancer genomes.... Read more

Technology

view channel
Image: Concept of biosensor integrated into hygiene pads enabling direct semi-quantitative analysis of biomarkers in unprocessed menstruation blood (Photo courtesy of Dosnon, L et al. DOI: 10.1002/advs.202505170)

First Ever Technology Recognizes Disease Biomarkers Directly in Menstrual Blood in Sanitary Towels

Over 1.8 billion people menstruate worldwide, yet menstrual blood has been largely overlooked in medical practice. This blood contains hundreds of proteins, many of which correlate with their concentration... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.