We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




First-Ever Blood-Powered Chip Offers Real-Time Health Monitoring

By LabMedica International staff writers
Posted on 25 Jun 2024

Metabolic disorders such as diabetes and osteoporosis are rapidly increasing globally, especially in developing countries. More...

Diagnosing these conditions generally requires blood tests; however, in remote areas with insufficient healthcare infrastructure, many individuals remain undiagnosed and untreated. Traditional diagnostic methods are invasive and labor-intensive, making real-time monitoring impractical, particularly in rural settings. Blood electrical conductivity, which reflects the concentration of key electrolytes like sodium and chloride ions, is crucial for diagnosing various health issues. These electrolytes play a vital role in many physiological processes, but measuring blood conductivity faces challenges such as electrode polarization, limited access to samples, and maintaining consistent blood temperature. Moreover, measuring conductivity at frequencies below 100 Hz, essential for a deeper understanding of blood's electrical properties and underlying biological functions, presents additional difficulties. Researchers are now advancing a novel device that generates electricity from blood to measure its conductivity, thereby facilitating medical care anywhere.

A research team at the University of Pittsburgh (Pittsburgh, PA, USA) has developed a portable millifluidic nanogenerator lab-on-a-chip device that can measure blood conductivity at low frequencies. This device uses blood as a conductive agent within a triboelectric nanogenerator (TENG). The TENG system harnesses mechanical energy from the blood and converts it into electricity through triboelectrification, where electron transfer occurs between contacting materials during movements such as compression or sliding.

This electron transfer and subsequent charge separation create a voltage difference that propels an electric current. The device measures the voltage generated under specific loading conditions to ascertain the blood's electrical conductivity. Its self-powering capability allows for the miniaturization of this innovative blood-based nanogenerator. The team employed AI models to predict blood conductivity directly from the voltage patterns produced by the device, and comparative tests with traditional methods have validated its accuracy. This breakthrough paves the way for deploying diagnostics directly to people's homes. Additionally, blood-powered nanogenerators could operate internally, utilizing the body's own blood chemistry for self-powered diagnostics.

“As the fields of nanotechnology and microfluidics continue to advance, there is a growing opportunity to develop lab-on-a-chip devices capable of surrounding the constraints of modern medical care,” said Amir Alavi, assistant professor of civil and environmental engineering at Pitt’s Swanson School of Engineering. “These technologies could potentially transform healthcare by offering quick and convenient diagnostics, ultimately improving patient outcomes and the effectiveness of medical services.”

Related Links:
University of Pittsburgh


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Serological Pipet Controller
PIPETBOY GENIUS
New
Integrated Biochemical & Immunological System
Biolumi CX8
New
Silver Member
Autoimmune Hepatitis Test
LKM-1-Ab ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.