We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Biosensors Use Non-Invasive Urinalysis and AI for Quick Assessment of Cancer Treatment

By LabMedica International staff writers
Posted on 18 Mar 2022
Print article
Image: Synthetic biosensors can quickly assess cancer treatment (Photo courtesy of Pexels)
Image: Synthetic biosensors can quickly assess cancer treatment (Photo courtesy of Pexels)

Immune checkpoint blockade (ICB) inhibitors have transformed the treatment of cancer and have become the frontline therapy for a broad range of malignancies because they work better than the previous standard of care. However, less than 25% of patients benefit from these drugs and it can also be difficult to tell in a timely fashion, if the treatment is working at all. A newly-developed system of synthetic biosensors will now enable a patient and doctor to quickly learn if an ICB therapy is working through the use of non-invasive urinalysis and artificial intelligence (AI).

The ICB drug activates protective T cells, which attack the tumor en masse. The T cells kill it with a deadly secretion of proteases called granzymes, part of the same class of enzymes found in the stomach that are used to digest food. For their study, researchers at the Georgia Institute of Technology (Atlanta, GA, USA) developed sensors to detect both T cell and tumor proteases (tumors also secrete a type of protease) during ICB treatment. The sensors are attached to the ICB drug that makes its way toward the tumor environment after injection. When they reach their destination, the sensors are activated by proteases produced by both T cells and tumor cells, which triggers the release of signaling fluorescent reporters that are designed to concentrate into urine. A second way of reading the biosensor reporters involves AI and machine learning techniques to identify signal patterns that discriminate between the different ways the drug can fail. The biosensors can tell if the drug is working and can discriminate between two mechanisms of intrinsic resistance - both due to mutations in different protein coding genes.

“We reasoned, if patients are responding to the drug, it means these T cells are making proteases, and if they’re not responding, these proteases are not present, so the T cells are not active,” said Gabe Kwong, associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. “Basically, these signals would be diluted in blood and would be very hard to pick up, but everything from your blood gets filtered through the kidneys. So when we look at the urine, we get very concentrated signals, which increase or decrease, corresponding to whether the patients are responding or not.”

Related Links:
Georgia Institute of Technology 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.