We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Biosensors Use Non-Invasive Urinalysis and AI for Quick Assessment of Cancer Treatment

By LabMedica International staff writers
Posted on 18 Mar 2022

Immune checkpoint blockade (ICB) inhibitors have transformed the treatment of cancer and have become the frontline therapy for a broad range of malignancies because they work better than the previous standard of care. More...

However, less than 25% of patients benefit from these drugs and it can also be difficult to tell in a timely fashion, if the treatment is working at all. A newly-developed system of synthetic biosensors will now enable a patient and doctor to quickly learn if an ICB therapy is working through the use of non-invasive urinalysis and artificial intelligence (AI).

The ICB drug activates protective T cells, which attack the tumor en masse. The T cells kill it with a deadly secretion of proteases called granzymes, part of the same class of enzymes found in the stomach that are used to digest food. For their study, researchers at the Georgia Institute of Technology (Atlanta, GA, USA) developed sensors to detect both T cell and tumor proteases (tumors also secrete a type of protease) during ICB treatment. The sensors are attached to the ICB drug that makes its way toward the tumor environment after injection. When they reach their destination, the sensors are activated by proteases produced by both T cells and tumor cells, which triggers the release of signaling fluorescent reporters that are designed to concentrate into urine. A second way of reading the biosensor reporters involves AI and machine learning techniques to identify signal patterns that discriminate between the different ways the drug can fail. The biosensors can tell if the drug is working and can discriminate between two mechanisms of intrinsic resistance - both due to mutations in different protein coding genes.

“We reasoned, if patients are responding to the drug, it means these T cells are making proteases, and if they’re not responding, these proteases are not present, so the T cells are not active,” said Gabe Kwong, associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. “Basically, these signals would be diluted in blood and would be very hard to pick up, but everything from your blood gets filtered through the kidneys. So when we look at the urine, we get very concentrated signals, which increase or decrease, corresponding to whether the patients are responding or not.”

Related Links:
Georgia Institute of Technology 


New
Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
New
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: A simple blood sample that allows DNA methylation could identify epigenetic biomarkers (Photo courtesy of 123RF)

Simple Blood Sample Could Identify Epigenetic Biomarkers to Predict CVD Risk in Type 2 Diabetes

People with type 2 diabetes face up to four times higher risk of cardiovascular events such as heart attacks, strokes, and angina compared to individuals without the condition. Yet, current tools used... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: An innovative deep learning model can accurately predict MSI tumor and immune checkpoint inhibitor responsiveness (Photo courtesy of Jae-Ho Cheong/Yonsei University College of Medicine)

AI Model Accurately Predicts MSI Tumor and Immune Checkpoint Inhibitor Responsiveness

One in three people is expected to develop cancer in their lifetime, and a key factor in patient prognosis is the tumor’s microsatellite status—whether it is stable or shows microsatellite instability-high (MSI-H).... Read more

Industry

view channel
Image: The acquisition of Exosome Diagnostics adds the ExoDx Prostate test to Mdxhealth’s portfolio (Photo courtesy of Bio-Techne)

Bio-Techne Divests Exosome Diagnostics to Reposition Product Portfolio

Bio-Techne Corporation (Minneapolis, MN, USA) has entered into an agreement with Mdxhealth SA (Irvine, CA, USA), which will acquire its Exosome Diagnostics Inc. (Waltham, MA, US) business, including the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.