Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Nanoparticle Assay Detects Respiratory Bacteria in Pneumonia Model

By LabMedica International staff writers
Posted on 13 Dec 2018
Researchers used a mouse pneumonia model to demonstrate how a nanoparticle-based technique could be used to detect Pseudomonas aeruginosa bacteria in infected animals and monitor bacterial clearance from their lungs during the course of antibiotic treatment.

Respiratory tract infections represent a significant public health risk, and timely and accurate detection of bacterial infections facilitates rapid therapeutic intervention. More...
Furthermore, monitoring the progression of infections after intervention enables alternative therapy in cases where initial treatments were ineffective, avoiding unnecessary drug dosing that could contribute to antibiotic resistance. However, current diagnostic and monitoring techniques rely on non-specific or slow methods, such as radiographic imaging and sputum cultures, which fail to specifically identify bacterial infections and take several days to identify optimal antibiotic treatments.

To improve the diagnostic situation, investigators at the Massachusetts Institute of Technology (Cambridge, USA) modified a "nanoparticle sensor" assay that they had developed previously to detect tumors. This technique utilized nanoparticles coated with peptides that could be digested by certain proteases (such as those expressed by cancer cells). Following injection, the particles accumulated in tumors, where the proteases cleaved the peptides from the surface of the nanoparticles. The peptides were eliminated as waste and were detected by a simple urine test.

In the current study, one protease sensor comprised a peptide substrate for the P. aeruginosa protease LasA. A second sensor was based on elastase protein and detected the recombinant enzyme neutrophil elastase as well as secreted proteases from bacterial strains.

The investigators reported in the November 29, 2018, online edition of the journal EBioMedicine that nanoparticle formulations of these protease sensors (termed activity-based nanosensors or ABNs) detected P. aeruginosa in infected mice and monitored bacterial clearance from the lungs over time. Additionally, ABNs differentiated between appropriate and ineffective antibiotic treatments acutely, within hours after the initiation of therapy.

“If the patient’s symptoms go away, then you assume the drug is working. But if the patient’s symptoms do not go away, then you would want to see if the bacteria are still growing. We were trying to address that issue,” said senior author Dr. Sangeeta Bhatia, professor of health sciences and technology, electrical engineering, and computer science at the Massachusetts Institute of Technology. “We have been working on this idea that measuring enzyme activity could be a new way to peer inside the body. The sensors can help you distinguish between whether there is an infection and inflammation, versus inflammation and no infection. What we showed in the paper is that when you treat with the right antibiotic, the infection goes down but the inflammation persists.”

Related Links:
Massachusetts Institute of Technology


New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Portable Electronic Pipette
Mini 96
Specimen Radiography System
TrueView 200 Pro
New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The study has linked blood proteins to Alzheimer’s disease and memory loss (Photo courtesy of Shutterstock)

Blood Test Could Detect Proteins Linked to Alzheimer's Disease and Memory Loss

Alzheimer’s disease has long been associated with sticky amyloid plaques in the brain, but these markers alone do not fully explain the memory loss and cognitive decline patients experience.... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.