Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Nanoparticle Assay Detects Respiratory Bacteria in Pneumonia Model

By LabMedica International staff writers
Posted on 13 Dec 2018
Researchers used a mouse pneumonia model to demonstrate how a nanoparticle-based technique could be used to detect Pseudomonas aeruginosa bacteria in infected animals and monitor bacterial clearance from their lungs during the course of antibiotic treatment.

Respiratory tract infections represent a significant public health risk, and timely and accurate detection of bacterial infections facilitates rapid therapeutic intervention. More...
Furthermore, monitoring the progression of infections after intervention enables alternative therapy in cases where initial treatments were ineffective, avoiding unnecessary drug dosing that could contribute to antibiotic resistance. However, current diagnostic and monitoring techniques rely on non-specific or slow methods, such as radiographic imaging and sputum cultures, which fail to specifically identify bacterial infections and take several days to identify optimal antibiotic treatments.

To improve the diagnostic situation, investigators at the Massachusetts Institute of Technology (Cambridge, USA) modified a "nanoparticle sensor" assay that they had developed previously to detect tumors. This technique utilized nanoparticles coated with peptides that could be digested by certain proteases (such as those expressed by cancer cells). Following injection, the particles accumulated in tumors, where the proteases cleaved the peptides from the surface of the nanoparticles. The peptides were eliminated as waste and were detected by a simple urine test.

In the current study, one protease sensor comprised a peptide substrate for the P. aeruginosa protease LasA. A second sensor was based on elastase protein and detected the recombinant enzyme neutrophil elastase as well as secreted proteases from bacterial strains.

The investigators reported in the November 29, 2018, online edition of the journal EBioMedicine that nanoparticle formulations of these protease sensors (termed activity-based nanosensors or ABNs) detected P. aeruginosa in infected mice and monitored bacterial clearance from the lungs over time. Additionally, ABNs differentiated between appropriate and ineffective antibiotic treatments acutely, within hours after the initiation of therapy.

“If the patient’s symptoms go away, then you assume the drug is working. But if the patient’s symptoms do not go away, then you would want to see if the bacteria are still growing. We were trying to address that issue,” said senior author Dr. Sangeeta Bhatia, professor of health sciences and technology, electrical engineering, and computer science at the Massachusetts Institute of Technology. “We have been working on this idea that measuring enzyme activity could be a new way to peer inside the body. The sensors can help you distinguish between whether there is an infection and inflammation, versus inflammation and no infection. What we showed in the paper is that when you treat with the right antibiotic, the infection goes down but the inflammation persists.”

Related Links:
Massachusetts Institute of Technology


New
Gold Member
Collection and Transport System
PurSafe Plus®
Collection and Transport System
PurSafe Plus®
Capillary Blood Collection Tube
IMPROMINI M3
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.