We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Novel DNA Vaccine Prevents AD in Mouse Model

By LabMedica International staff writers
Posted on 04 Dec 2018
A team of Alzheimer's disease (AD) researchers has shown that a DNA vaccine directed at the toxic Abeta42 peptide protected the animals comprising a mouse (AD) model from both amyloid plaques and pathogenic tau tangles.

Amyloid deposition and hyperphosphorylation of tau protein are both pathological characteristics of AD. More...
Investigators at the University of Texas Southwestern Medical Center (Dallas, USA) had demonstrated previously that a vaccine based on Abeta42 peptide could reduce buildup of amyloid plaques and tau tangles, but with unacceptably severe side effects.

In the current study, the investigator used a triple-transgenic mouse model (3xTg-AD) that developed plaques and tangles in the brain similar to human AD. Four cohorts of between 15 and 24 mice each were injected in the skin with DNA coding for the Abeta42 peptide. The researchers had shown previously that full-length DNA Abeta42 trimer immunization was non-inflammatory and induced a regulatory immune response.

Results published in the November 20, 2018, online edition of the journal Alzheimer's Research and Therapy revealed that the vaccine caused a 40% reduction in beta-amyloid and up to a 50% reduction in tau compared with non-immunized 3xTg-AD control animals, with no adverse immune response.

Genes encoded by the DNA in the vaccine were expressed within the skin, and the peptides were taken up by dendritic cells traveling to the regional lymph nodes and presenting the antigen to B- and T-cells. Immunotherapy with DNA Abeta42 trimer led to reduction of Abeta40/Abeta42 peptides and amyloid plaques, and as shown here for the first time, DNA Abeta42 trimer immunization led also to significant reduction of tau from the brains of the mice.

"If the onset of the disease could be delayed by even five years, that would be enormous for the patients and their families," said senior author Dr. Doris Lambracht-Washington, assistant professor of neurology and neurotherapeutics at the University of Texas Southwestern Medical Center. "The number of dementia cases could drop by half."

Related Links:
University of Texas Southwestern Medical Center


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
Automated MALDI-TOF MS System
EXS 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.