We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Bacteriophage Infection Mediated by Molecules from Susceptible Organisms

By LabMedica International staff writers
Posted on 26 Jan 2017
Print article
A team of Israeli molecular microbiologists has found that bacteria that are resistant to infection by bacteriophages can lose this resistance when incubated together with susceptible bacteria.

The mechanism by which bacteria that are resistant to infection by phages become susceptible had not been well studied. To elucidate this mechanism, investigators at The Hebrew University of Jerusalem investigated phage dynamics in communities harboring phage-resistant (R) and sensitive (S) Bacillus subtilis bacteria.

Using cultures of B. subtilis and its lytic phage SPP1, they demonstrated that R cells, lacking SPP1 receptor, could be lysed by SPP1 when co-cultured with S cells. This unanticipated lysis was triggered in part by phage lytic enzymes released from nearby infected cells. They also discovered that occasionally phages could invade R cells, a phenomenon they termed acquisition of sensitivity (ASEN).

The investigators reported in the January 12, 2017, issue of the journal Cell that ASEN was mediated by R cells transiently gaining phage attachment molecules from neighboring S cells and that this molecular exchange was driven by membrane vesicles. They speculated that this exchange of phage attachment molecules could even occur in an interspecies fashion, enabling phage adsorption to non-host species, providing an unexplored route for horizontal gene transfer (HGT).

"In the present study, we show for the first time how bacteria entirely resistant to a given phage become susceptible upon co-incubation with sensitive bacteria. Phage invasion into resistant cells could have a major impact on transfer of antibiotic resistance and virulence genes among bacteria. This aspect should be carefully considered when employing phage therapy, as phage infection of a given species may result in gene transmission into neighboring bacteria resistant to the phage," said senior author Dr. Sigal Ben-Yehuda, professor of microbiology and molecular genetics at The Hebrew University of Jerusalem.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.