We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Cardiac Researchers Use Stem Cells to Generate Functional Heart Muscle

By LabMedica International staff writers
Posted on 03 May 2016
Stem cell researchers have developed a new technique to form micro-scale arrays of engineered heart muscle (EHM) from fewer than 10,000 starter cells without requirement for adherence features or extracellular matrix (ECM).

Tissue engineering approaches have the potential to increase the physiologic relevance of cells, such as cardiomyocytes, derived from human induced pluripotent stem cells (iPSCs). More...
However, forming engineered heart muscle (EHM) typically requires more than one million cells per tissue. Existing miniaturization strategies involve complex approaches not suitable for mass production, limiting the ability to use EHM for iPSC-based disease modeling and drug screening. Microscale cardiospheres are easily produced, but do not facilitate assembly of elongated muscle or direct force measurements.

Investigators at the Gladstone Institute (San Francisco, CA, USA) recently described a new approach for preparing EHM that dramatically reduced the number of cells needed, making it an easier, cheaper, and more efficient system.

Initially, the investigators generated heart muscle cells and connective tissue cells from iPSCs. They then cultured combinations of these cells in a special vessel that resembled a tiny dog bone. This unique shape encouraged the cells to self-organize into elongated muscle fibers. Within a few days, the micro tissues resembled heart muscle both structurally and functionally.

The EHM prepared by this method exhibited uniaxial contractility and alignment, robust sarcomere assembly, and reduced variability and hypersensitivity in drug responsiveness compared to monolayers with the same cellular composition.

“The beauty of this technique is that it is very easy and robust, but it still allows you to create three-dimensional miniature tissues that function like normal tissues,” said senior author Dr. Bruce Conklin, senior investigator of cardiovascular disease at the Gladstone Institute. “Our research shows that you can create these complex tissues with a simple template that exploits the inherent properties of these cells to self-organize. We think that the micro heart muscle will provide a superior resource for conducting research and developing therapies for heart disease.”

Related Links:
Gladstone Institute


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
New
Gold Member
Genetic Type 1 Diabetes Risk Test
T1D GRS Array
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.