We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Targeting Telomere Protein Destroys Cancer Cells

By Biotechdaily staff writers
Posted on 01 Mar 2006
Inactivating a protein called mammalian Rad9 could make cancer cells easier to kill with ionizing radiation, according to recent research.

The investigators discovered that Rad9, previously thought to be a "watchman” that monitors for DNA damage, is in actuality a "repairman” that fixes hazardous breaks in the DNA double helix. More...
They found Rad9 is mostly active in telomeres, the protective ends of chromosomes. Because of this new role, Rad9 has earned the investigators' interest as a possible target for cancer treatment--knocking out Rad9 would enhance the effectiveness of radiation treatments by making it easier for radiation to inflict lethal damage to a tumor's genetic material. Their study appears in the March 2006 issue of the journal Molecular and Cellular Biology.

"Our study suggests that if we could inactivate Rad9 in tumor cells, we would be able to kill them with a very low dose of radiation and gain a therapeutic advantage,” stated senior author Tej K. Pandita, Ph.D., associate professor of radiation oncology and a faculty member of the Siteman Cancer Center at Washington University School of Medicine (St. Louis, MO, USA).

The study demonstrated that Rad9 proteins interact with chromosomes' telomeres, which are distinctive structures at the ends of chromosomes that protect them from degradation or fusion. Particularly, Rad9 proteins were shown to interact with proteins called telomere-binding proteins. When the scientists inactivated Rad9 in human cells, they saw damage to chromosomes and end-to-end fusion at the telomeres. DNA damage and chromosomal fusion can interrupt the cell cycle and cause cell death. Because radiation treatments increase these incidents, loss of Rad9 in cancer cells could enhance the killing effect of radiation.

Earlier studies had suggested that Rad9 maintains cell-cycle checkpoint controls--researchers believed that the protein helped track DNA during replication and signaled the cell to stop its growth cycle if damage was detected. That role is not supported by this current study, and it has become evident that Rad9 directs the repair of DNA damage instead, according to Dr. Pandita.

"We saw that Rad9 stabilizes telomeres, and because we aren't yet sure how it does it, we will continue to study how Rad9 influences the telomere structure,” Dr. Pandita said. "We speculate that without Rad9, some of the other proteins associated with the telomeric structure become delocalized, exposing the DNA at the ends of chromosomes.”

In addition to being able to enhance radiosensitization of cancerous tissues by inactivating Rad9, the researchers would like to be able to identify individuals with mutations in Rad9 because such mutations could predispose a person to cancer. "If Rad9 isn't functioning properly in cells, it can lead to genomic instability and result in the malignant transformation of cells,” stated Dr. Pandita. "In fact, fusions at the telomeric ends of chromosomes like those seen in the absence of Rad9 appear frequently in tumor tissues.”

The study's results put Rad9 at a vital juncture: its function is crucial to the health of cells, and this makes it a major vulnerability to exploit for cancer therapy.



Related Links:
Washington University School of Medicine

New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Cancer cells (red) stick to mesothelial cells (green) and form hybrid spheres that cut into surrounding abdominal tissue (Photo courtesy of Uno et al., 2026)

Abdominal Fluid Testing Can Predict Ovarian Cancer Progression

Ovarian cancer kills more women than any other gynecological cancer, largely because it is usually diagnosed only after it has spread widely within the abdomen. Unlike many other cancers, it does not rely... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Industry experts gather at WHX Labs Dubai to discuss how leadership must adapt as AI and automation transform the laboratory (Photo courtesy of Shutterstock)

WHX Labs in Dubai spotlights leadership skills shaping next-generation laboratories

WHX Labs in Dubai (formerly Medlab Middle East), held at Dubai World Trade Centre (DWTC) from 10–13 February, brings together international experts to discuss the factors redefining laboratory leadership,... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.