We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Quantum Dot Nanosensor Detects DNA

By Biotechdaily staff writers
Posted on 13 Dec 2005
Utilizing miniature semiconductor crystals, biologic probes, and a laser, engineers have devised a new technique of locating specific sequences of DNA by making them light up under a microscope. More...
The investigators, who report that the method will have important uses in medical research, established its potential in their laboratory by detecting a sample of DNA containing a mutation linked to ovarian cancer.

The investigators, from Johns Hopkins University (Baltimore, MD, USA), published the new DNA nanosensor study in an article in the November 2005 issue of the journal Nature Materials.

"Conventional methods of finding and identifying samples of DNA are cumbersome and time-consuming,” said Dr. Jeff Tza-Huei Wang, senior author of the article and lead investigator of the research team. "This new technique is ultrasensitive, quick, and relatively simple. It can be used to look for a particular part of a DNA sequence, as well as for genetic defects and mutations.”

The method incorporates a unique combination of organic and inorganic components. "We are the first to demonstrate the use of quantum dots as a DNA sensor,” Dr. Wang said. Quantum dots are crystals of semiconductor material, whose sizes are only in the range of a few nanometers across. (A nanometer is one-billionth of a meter.) They are conventionally utilized in electronic circuitry; recently, however, scientists have begun to examine their use in biologic studies.

Dr. Wang, an assistant professor in the department of mechanical engineering and the Whitaker Biomedical Engineering Institute at Johns Hopkins, led his group in exploiting a significant characteristic of quantum dots: they can easily transfer energy. When a laser shines on a quantum dot, it can pass the energy on to a neighboring molecule, which then emits a fluorescent glow that can be seen under a microscope.

But quantum dots by themselves cannot find and identify DNA strands. To do this, the researchers used two biologic probes composed of synthetic DNA. Each of these probes is a complement to the DNA sequence the researchers are looking for. Therefore, the probes seek out and bind to the target DNA.

Each DNA probe also has an important partner. Attached to one probe is a Cy5 molecule that glows when it collects energy. Attached to the second probe is a molecule called biotin. Biotin adheres to even another molecule called streptavidin, which envelopes the surface of the quantum dot.

To devise their nanosensor, the researchers combined the two DNA probes, plus a quantum dot, in a lab dish containing the DNA they were trying to find. After that, the two DNA probes linked up to the target DNA strand, holding it in a sandwich-like hold. Then the biotin on one of the probes caused the DNA "sandwich” to bind to the surface of the quantum dot.

Lastly, when the investigators shined a laser on the mixture, the quantum dot passed the energy on to the Cy5 molecule that was attached to the second probe. The Cy5 released this energy as a fluorescent glow. If the target DNA had not been present in the mixture, the four components would not have joined together, and the characteristic glow would not have appeared. Each quantum dot can attach to up to approximately 60 DNA sequences, making the combined glow even brighter and easier to see.

To evaluate the new technique, the researchers obtained DNA samples from patients with ovarian cancer and identified DNA sequences containing a critical mutation. "This method may help us identify people at risk of developing cancer, so that treatment can begin at a very early stage,” Dr. Wang said.

Johns Hopkins University has filed for a provisional patent covering the DNA nanosensor technology.


Related Links:
Johns Hopkins University

Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
Silver Member
PCR Plates
Diamond Shell PCR Plates
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Cancer cells (red) stick to mesothelial cells (green) and form hybrid spheres that cut into surrounding abdominal tissue (Photo courtesy of Uno et al., 2026)

Abdominal Fluid Testing Can Predict Ovarian Cancer Progression

Ovarian cancer kills more women than any other gynecological cancer, largely because it is usually diagnosed only after it has spread widely within the abdomen. Unlike many other cancers, it does not rely... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Industry experts gather at WHX Labs Dubai to discuss how leadership must adapt as AI and automation transform the laboratory (Photo courtesy of Shutterstock)

WHX Labs in Dubai spotlights leadership skills shaping next-generation laboratories

WHX Labs in Dubai (formerly Medlab Middle East), held at Dubai World Trade Centre (DWTC) from 10–13 February, brings together international experts to discuss the factors redefining laboratory leadership,... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.