We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Genetically Engineered Microdevices

By Biotechdaily staff writers
Posted on 03 Oct 2005
Nanostructured microdevices may soon be produced in bulk at lower costs, and with a wider variety of compositions and shapes than was once possible, resulting in dramatic improvements in device functionality by utilizing very small biologically generated structures. More...


These completely new biologically enabled techniques are described in the July 2005 of the International Journal of Applied Ceramic Technology. This study's newly devised methods for the low-cost mass production of micro-devices could yield unprecedented advancements in genetically engineered microdevices (GEMs) for biomedical, computing, environmental cleanup, defense, and many other applications.

Traditional microfabrication processes, similar to techniques used to create computer microchips, are costly and not well-suited for producing large numbers of complicated, three-dimensional (3D) nanostructured devices with a wide variety of chemistries and characteristics. Nevertheless, nature provides impressive examples of microorganisms that synthesize microscopic nanostructured shells with highly controlled and very reproducible 3D shapes and characteristics currently unachievable by manmade processes. However, the naturally occurring diatom microshells do not have the specific properties required for device applications, such as biocompatibility, electrical conductivity, thermal stability, and chemical compatibility.

According to the published study, the marketability of such devices will require precise 3D fabrication of chemically customized structures on a fine scale and mass production of such structures on a large scale. These often-contradictory challenges can be tackled with a ground-breaking new paradigm that combine biologic self-assembly with synthetic chemistry: bioclastic and shape-preserving inorganic conversion (BaSIC). Among the most extraordinary of nature's microorganisms are diatoms (unicellular algae). Each of the tens of thousands of diatom species assembles silica nanoparticles into a microshell with a distinctive 3D contour and pattern of fine (nanoscale) characteristics. The repeated doubling associated with biologic reproduction enables huge amounts of such 3D microshells to be generated. Such genetic accuracy is highly appealing for device manufacturing. However, the natural chemistries assembled by diatoms (and other microorganisms) are relatively limited. With BaSIC processes, biogenic assemblies can be converted into a wide variety of new functional chemistries, while maintaining the 3D morphologies. Ongoing developments in genetic engineering have the potential to generate microorganisms geared at creating nanoparticle structures with device-specific shapes. Large-scale culturing of such genetically modified microorganisms, combined with shape-preserving chemical conversion (via BaSIC processes), would then provide low-cost 3D GEMS.

According to the study's lead author, Kenneth Sandhage, Ph.D., from the Institute for Bioengineering and Biosciences, Georgia Institute of Technology (Atlanta, GA, USA), By demonstrating that biologically derived structures can be chemically modified without changing the starting shapes or fine features, we have opened the door for new research and development in the processing and application of many devices that would otherwise be very difficult or expensive to produce.



Related Links:
Georgia Institute of Tech

Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Cancer cells (red) stick to mesothelial cells (green) and form hybrid spheres that cut into surrounding abdominal tissue (Photo courtesy of Uno et al., 2026)

Abdominal Fluid Testing Can Predict Ovarian Cancer Progression

Ovarian cancer kills more women than any other gynecological cancer, largely because it is usually diagnosed only after it has spread widely within the abdomen. Unlike many other cancers, it does not rely... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Industry experts gather at WHX Labs Dubai to discuss how leadership must adapt as AI and automation transform the laboratory (Photo courtesy of Shutterstock)

WHX Labs in Dubai spotlights leadership skills shaping next-generation laboratories

WHX Labs in Dubai (formerly Medlab Middle East), held at Dubai World Trade Centre (DWTC) from 10–13 February, brings together international experts to discuss the factors redefining laboratory leadership,... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.