We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Hands-On Visualization of Molecules

By Biotechdaily staff writers
Posted on 13 Apr 2005
Scientists have devised a new way to interact with molecules so tiny that they cannot be visualized with even the most powerful microscopes.

The new technology combines hand-held objects with complex computer displays, and is called tangible interfaces for structural molecular biology. More...
Its creators hope to see it used for both scientific and educational research. "We want to be able to understand, communicate, and interact with complex structures in natural ways. The easier it is to hold a biological molecule in your hands, the easier it will be to figure out what it is doing in the body,” explained Prof. Art Olson, a molecular biologist at the Scripps Research Institute (La Jolla, CA, USA).

By utilizing sophisticated three-dimensional (3D)-producing printers that "print” solid objects out of thousands of layers of plastic or plaster, the group can fabricate models of DNA, proteins, and other small biologic molecules. These models can be twisted, touched, nipped, and flung from person to person. Then, using a basic digital video camera to take and track images of these objects, the researchers are able to devise an artificial environment in which the computer interfaces with the object in what is called an augmented reality.

The molecular model appears on the computer screen, twisting and turning in real time as the individual holding the object manipulates it, and software designed by the Scripps Research team enables the computer to superimpose scientific data about the molecule onto the display.

The scientists have created novel ways to build the pieces of a structure, such as a protein. They have been experimenting in constructing hybrid models, such as inserting magnets to snap together two pieces of a model. This has allowed them to show such processes as viral assembly, the 3D folding of a long amino acid chain into a small protein, and docking between two proteins.

To demonstrate self-assembly--a common mechanism whereby small objects such as viruses put themselves together from tiny identical subunits into a compact structure, similar to a 3D puzzle--the researchers put pieces of plastic that look like very complicated Legos approximately the size of a quarter into a jar and shake them up. The pieces represent protein molecules that come together to form a virus particle, and small magnets imbedded in them help direct them to reshape in the correct way. After some forceful shaking, there is an assembled model of a virion inside the jar.

By using the computer's augmented reality software, the scientists were then able to combine real-world objects with a computer-generated graphics where the computer interfaces with the object. Prof. Olsen demonstrated this by taking a model of a protein and displaying on the computer screen its electrostatics--red and blue clouds surrounding the object he is holding that show favorable and unfavorable interactions. As the two ends of the molecule are brought together in close proximity to each other, the cloud surrounding the ends changes from glowing blue to flowing red. The protein does not "like” to have these two ends so close to one another. Correspondingly, according to Prof. Olsen, such substantial interfaces could be utilized to manipulate models and predict molecular interactions.

The study was published in the March 2005 issue of the journal Structure.




Related Links:
Scripps Research Institute

Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Pipette
Accumax Smart Series
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: LIAISON Murex Anti-HDV Immunoassay is the first fully automated FDA-authorized immunoassay for HDV detection in the U.S. (Photo courtesy of Diasorin)

Fully Automated Immunoassay Test Detects HDV Co‑Infection and Super-Infection

Hepatitis delta, also known as hepatitis D, is caused by the hepatitis delta virus (HDV). It is a viral liver infection that can result in one of the most severe forms of viral hepatitis.... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Industry experts gather at WHX Labs Dubai to discuss how leadership must adapt as AI and automation transform the laboratory (Photo courtesy of Shutterstock)

WHX Labs in Dubai spotlights leadership skills shaping next-generation laboratories

WHX Labs in Dubai (formerly Medlab Middle East), held at Dubai World Trade Centre (DWTC) from 10–13 February, brings together international experts to discuss the factors redefining laboratory leadership,... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.