We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Noninvasive Methods Detect Lead Exposure Faster, Easier and More Accurately at POC

By LabMedica International staff writers
Posted on 30 Oct 2024
Print article
Image: Aaron Specht and Alison Roth using benchtop EDXRF systems to analyze toxic elements in dried blood spot samples (Photo courtesy of Malvern Panalytical)
Image: Aaron Specht and Alison Roth using benchtop EDXRF systems to analyze toxic elements in dried blood spot samples (Photo courtesy of Malvern Panalytical)

Exposure to lead can negatively affect health in multiple ways, leading to damage in the brain and central nervous system, delays in development and growth, learning and behavioral issues, problems with hearing and speech, reproductive health complications, kidney damage, high blood pressure, anemia, and more. The standard method for measuring lead exposure is through a blood test, which only reflects exposure from the past 30 days. If this test is conducted outside that timeframe—especially in children—clinicians may not receive results that accurately represent chronic cumulative exposure in the body. Additionally, measuring bone lead levels is crucial because lead, which mimics calcium upon entering the body, disrupts pathways to the brain and accumulates in the bone. However, older technologies used to assess bone lead exposure have several limitations, including their size, the need for specialized knowledge, reliance on rare elements, and slow processing times. Now, researchers have developed noninvasive methods that can detect lead exposure levels in both bone and blood more quickly, easily, and sensitively at the point of care compared to traditional techniques.

The innovative, patent-pending technology developed by researchers at Purdue University (West Lafayette, IN, USA) utilizes portable X-ray fluorescence (XRF) analyzers to measure lead exposure in bone and blood. This new approach with portable XRFs addresses the limitations associated with traditional bone testing. The XRF analyzer employs a straightforward ‘point-and-shoot’ process, and results are available on the analyzer's tablet within minutes. Training an individual to operate this system takes only about 30 minutes, enabling them to perform measurements that can identify community-level lead exposure. The next step for the research team involves securing support from health leaders to incorporate this technology into national cohort studies and routine surveillance, which could help establish national standards for cumulative lead exposure.

Additionally, researchers have developed a method for detecting lead levels in dried blood spots, which is a significant improvement over the traditional approach that requires venous blood draws sent to a laboratory for analysis. The new technique allows for lead detection using dried blood spots, which can be collected much more easily with just a finger prick, requiring only a small amount of capillary blood. As long as more than 10 microliters of blood is present on the dried spot, the test can provide an accurate lead measurement. Similar to the bone test technology, this innovation enhances accessibility for underserved communities and rural populations and offers better sensitivity than existing tests. Both advancements have potential applications for health officials globally. The research on these methods has been published in the September 2024 issue of Current Environmental Health Reports and the March 2021 issue of Environmental Science & Technology.

“It can be difficult to assess their lead exposure levels because it’s hard to get them to a centralized clinic, unlike in an urban environment where people visit a clinic often. By using a portable XRF analyzer, health officials can travel to a community, conduct testing, quickly receive results and move on to the next community,” said Aaron Specht, assistant professor in the School of Health Sciences, who has developed both the technologies. “Our new method detects lead using dried blood spots, which are much easier to collect; they require just a finger prick and only a very small volume of capillary blood. As long as there’s more than 10 microliters of blood on that dried blood spot, we will have an accurate measurement of lead.”

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
Microplates
Eppendorf Microplates
New
Parasite Suspension for QC
Cryptosporidium Species Parasite Suspension

Print article

Channels

Immunology

view channel
Image: The blood test for fungal infections provides faster results and has a less invasive process (Photo courtesy of 123RF)

Blood Test for Fungal Infections Could End Invasive Tissue Biopsies

For individuals with weakened immune systems, common molds found in the environment—such as in the soil, on damp walls, or on forgotten fruits—can lead to severe infections deep within the body.... Read more

Microbiology

view channel
Image: RNA sequencing directly from whole blood aims to expand access to LRTI testing (Photo courtesy of CARB-X)

Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood

Pneumonia and lower-respiratory-tract infections (LRTIs) are among the top causes of illness and death globally, particularly in vulnerable populations such as the elderly, young children, and immunocompromised... Read more

Pathology

view channel
Image: The plasma cell dataset was created to assist in the accurate diagnosis (Photo courtesy of Shutterstock)

Novel Dataset of Plasma Cells to Aid Diagnosis of Multiple Myeloma

Myeloma is a rare blood cancer that originates in plasma cells, a type of immune cell responsible for producing antibodies that help fight infections. The disease begins when an abnormal plasma cell starts... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.