We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

Self-Heating Microfluidic Devices Can Detect Diseases in Tiny Blood or Fluid Samples

By LabMedica International staff writers
Posted on 15 Dec 2023
Print article
Image: The self-heating microfluidic devices can help detect diseases without expensive lab equipment (Photo courtesy of MIT)
Image: The self-heating microfluidic devices can help detect diseases without expensive lab equipment (Photo courtesy of MIT)

Microfluidics, which are miniature devices that control the flow of liquids and facilitate chemical reactions, play a key role in disease detection from small samples of blood or other fluids. Commonly known examples include at-home Covid-19 test kits, which use basic microfluidic technology. However, more complex microfluidic applications often require chemical reactions at precise temperatures. Typically, these advanced devices are produced in clean rooms and include heating elements made of expensive materials like gold or platinum, making the manufacturing process costly and challenging to scale. Researchers have now made a breakthrough by employing 3D printing to build self-heating microfluidic devices, potentially paving the way for the creation of affordable and efficient tools that could detect various diseases.

Scientists at the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA) innovatively utilized multimaterial 3D printing to fabricate microfluidic devices with integrated heating elements. This development allows for precise temperature control of fluids moving through the device's microscopic channels. The method is highly customizable, enabling engineers to design microfluidics that heat fluids to specific temperatures or follow defined heating patterns in designated areas of the device. Remarkably, this cost-effective production method requires only about USD 2 worth of materials for each fully functional microfluidic device.

The dimensions of the device are comparable to a U.S. quarter, and its production is quick, taking only a few minutes. This advancement is particularly significant for remote or under-resourced areas in developing countries, where access to expensive laboratory equipment for diagnostic tests is often limited. Looking ahead, the researchers aim to incorporate magnets directly into the microfluidic devices. These embedded magnets could facilitate chemical reactions that require the sorting or aligning of particles. The researchers are also investigating alternative materials capable of achieving higher temperatures. This innovation in microfluidic technology represents a significant step towards more accessible and efficient diagnostic tools, especially in areas with limited resources.

“Clean rooms in particular, where you would usually make these devices, are incredibly expensive to build and to run,” said Luis Fernando Velásquez-García, a principal scientist in MIT’s Microsystems Technology Laboratories (MTL). “But we can make very capable self-heating microfluidic devices using additive manufacturing, and they can be made a lot faster and cheaper than with these traditional methods. This is really a way to democratize this technology.”

Related Links:

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
POCT Fluorescent Immunoassay Analyzer
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article


Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more


view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more


view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more


view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.