We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Self-Heating Microfluidic Devices Can Detect Diseases in Tiny Blood or Fluid Samples

By LabMedica International staff writers
Posted on 15 Dec 2023

Microfluidics, which are miniature devices that control the flow of liquids and facilitate chemical reactions, play a key role in disease detection from small samples of blood or other fluids. More...

Commonly known examples include at-home Covid-19 test kits, which use basic microfluidic technology. However, more complex microfluidic applications often require chemical reactions at precise temperatures. Typically, these advanced devices are produced in clean rooms and include heating elements made of expensive materials like gold or platinum, making the manufacturing process costly and challenging to scale. Researchers have now made a breakthrough by employing 3D printing to build self-heating microfluidic devices, potentially paving the way for the creation of affordable and efficient tools that could detect various diseases.

Scientists at the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA) innovatively utilized multimaterial 3D printing to fabricate microfluidic devices with integrated heating elements. This development allows for precise temperature control of fluids moving through the device's microscopic channels. The method is highly customizable, enabling engineers to design microfluidics that heat fluids to specific temperatures or follow defined heating patterns in designated areas of the device. Remarkably, this cost-effective production method requires only about USD 2 worth of materials for each fully functional microfluidic device.

The dimensions of the device are comparable to a U.S. quarter, and its production is quick, taking only a few minutes. This advancement is particularly significant for remote or under-resourced areas in developing countries, where access to expensive laboratory equipment for diagnostic tests is often limited. Looking ahead, the researchers aim to incorporate magnets directly into the microfluidic devices. These embedded magnets could facilitate chemical reactions that require the sorting or aligning of particles. The researchers are also investigating alternative materials capable of achieving higher temperatures. This innovation in microfluidic technology represents a significant step towards more accessible and efficient diagnostic tools, especially in areas with limited resources.

“Clean rooms in particular, where you would usually make these devices, are incredibly expensive to build and to run,” said Luis Fernando Velásquez-García, a principal scientist in MIT’s Microsystems Technology Laboratories (MTL). “But we can make very capable self-heating microfluidic devices using additive manufacturing, and they can be made a lot faster and cheaper than with these traditional methods. This is really a way to democratize this technology.”

Related Links:
MIT


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Collection and Transport System
PurSafe Plus®
New
Gold Member
Automatic Chemiluminescence Immunoassay Analyzer
Shine i2000
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Researcher Sudhaunsh Deshpande holding the molecularly imprinted polymer-based biosensor (Photo courtesy of University of Liverpool)

AI-Powered Blood Tests Enable Early Detection of Alzheimer’s Disease

Alzheimer’s disease, the most common form of dementia, affects more than 55 million people globally. Early diagnosis is critical for managing symptoms and slowing progression, yet current testing methods... Read more

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The tool enables scientists to track real-time fluctuations in T cell function with unprecedented speed and precision (Photo courtesy of Shutterstock)

Luminescent Probe Measures Immune Cell Activity in Real Time

The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more

Industry

view channel
Image: The collaboration supports clinical validation and regulatory submissions of the new T1D 4-plex assay on Revvity’s GSP instrument (Photo courtesy of Revvity)

Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes

Type 1 diabetes (T1D) is a lifelong autoimmune condition in which the immune system destroys the pancreas’s insulin-producing beta cells, leading to dependence on insulin therapy. Early detection is critical... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.