We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




AI-Driven Analysis of Digital Pathology Images to Improve Pediatric Sarcoma Subtyping

By LabMedica International staff writers
Posted on 05 May 2025

Pediatric sarcomas are rare and diverse tumors that can develop in various types of soft tissue, such as muscle, tendons, fat, blood or lymphatic vessels, nerves, or the tissue surrounding joints. More...

These sarcomas are classified into different subtypes based on several factors, including the tissue of origin and various molecular characteristics. Accurately classifying a patient’s sarcoma subtype is crucial as it helps guide treatment decisions and optimize outcomes. Unfortunately, due to the heterogeneity of sarcomas, classification can be extremely challenging. This often requires complex molecular and genetic testing, along with external review by highly specialized pathologists who rely on pattern recognition skills developed over years of training. Such resources are not always available in many healthcare settings. Now, findings of a study presented at the American Association for Cancer Research (AACR) Annual Meeting 2025 have shown that an artificial intelligence (AI)-based model can accurately classify pediatric sarcomas using only digital pathology images.

In their study, researchers at UConn Health (Farmington, CT, USA) and their collaborators explored the potential of AI to identify pediatric sarcoma subtypes with high precision. They used 691 digital images of pathology slides from various collaborators, representing nine distinct sarcoma subtypes, to train AI algorithms to detect patterns specific to each subtype. By digitizing tissue pathology slides, the researchers were able to convert the visual information a pathologist typically examines into numerical data that a computer can process. Much like how smartphones can identify a person’s face in photos and organize them into albums, the AI models learned to recognize tumor morphology patterns in the digitized slides and categorize them into diagnostic groups linked to specific sarcoma subtypes. To ensure consistency, the researchers developed and applied open-source software to harmonize images collected from different institutions, accounting for differences in format, staining, magnification, and other variables. The harmonized images were then broken into small tiles, which were analyzed using deep learning models that extracted numerical data for further evaluation using a novel statistical method.

This statistical method generated feature summaries for each slide, which were then assessed by the trained AI algorithms to assign the slides to specific subtypes. In validation experiments, the AI models successfully identified sarcoma subtypes with high accuracy. Specifically, the models distinguished between Ewing sarcoma and other sarcoma types in 92.2% of cases, non-rhabdomyosarcoma soft tissue sarcomas and rhabdomyosarcoma soft tissue sarcomas in 93.8% of cases, alveolar rhabdomyosarcoma and embryonal rhabdomyosarcoma in 95.1% of cases, and alveolar rhabdomyosarcoma, embryonal rhabdomyosarcoma, and spindle cell rhabdomyosarcoma in 87.3% of cases. A limitation of the study was the relatively small number of available pathology images for training the AI algorithms. However, the researchers pointed out that, given the rarity of pediatric sarcomas, their imaging dataset is likely the largest multicenter collection of pediatric sarcomas to date, encompassing a wide range of subtypes, anatomical locations, and patient demographics.

“Our findings demonstrate that AI-based models can accurately diagnose various subtypes of pediatric sarcoma using only routine pathology images. This AI-driven model could help provide more pediatric patients access to quick, streamlined, and highly accurate cancer diagnoses regardless of their geographic location or health care setting,” said Adam Thiesen, an MD/PhD candidate at UConn Health. “Our models are built in such a way that new images can be added and trained with minimal computational equipment,” he added. “After the standard data processing, clinicians could theoretically use our models on their own laptops, which could vastly increase accessibility even in under-resourced settings.”

Related Links:
UConn Health


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Serological Pipet Controller
PIPETBOY GENIUS
New
Toxoplasma Gondii Test
Toxo IgG ELISA
New
UHF RFID Tag & Inlay
AD-327 U9 ETSI Pure 95
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Gut microbes may help in recognizing and treating pancreatic cancer (Photo courtesy of Adobe Stock)

Gut Microbes Could Enable Early Detection and Treatment of Pancreatic Cancer

Pancreatic cancer remains one of the most serious and challenging diseases in oncology due to its difficulty in detection and limited treatment options. Now, a new international collaborative study suggests... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The tip optofluidic immunoassay platform enables rapid, multiplexed antibody profiling using only 1 μL of fingertip blood (Photo courtesy of hLife, DOI:10.1016/j.hlife.2025.04.005)

POC Diagnostic Platform Performs Immune Analysis Using One Drop of Fingertip Blood

As new COVID-19 variants continue to emerge and individuals accumulate complex histories of vaccination and infection, there is an urgent need for diagnostic tools that can quickly and accurately assess... Read more

Microbiology

view channel
Image: The U.S. FDA-cleared IntelliSep rapid host response diagnostic represents a breakthrough in sepsis care (Photo courtesy of Cytovale)

Rapid Diagnostic Test Slashes Sepsis Mortality by 39%

Sepsis remains one of the most challenging and fatal conditions in contemporary healthcare, accounting for nearly one-third of all hospital-related deaths in the United States. In emergency departments... Read more

Industry

view channel
Image: The knowledge transfer partnership will further develop technology to rapidly diagnose serious and high-risk infectious diseases (Photo courtesy of Aston University)

Aston University and BG Research Partner to Commercialize Groundbreaking Medical Diagnostic

Technology that can rapidly diagnose high-consequence infectious diseases will take a major step forward towards commercialization, thanks to a new partnership. A Knowledge Transfer Partnership (KTP)... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.