We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Microscope Offers Unprecedented Deep and Wide-Field Visualization of Brain Activity at Single-Cell Resolution

By LabMedica International staff writers
Posted on 18 Nov 2024
Print article
Image: A large field-of-view, single-cell-resolution two- and three-photon microscope for deep and wide imaging (Photo courtesy of Mok, A.T., Wang, T., Zhao, S. et al.; doi.org/10.1186/s43593-024-00076-4)
Image: A large field-of-view, single-cell-resolution two- and three-photon microscope for deep and wide imaging (Photo courtesy of Mok, A.T., Wang, T., Zhao, S. et al.; doi.org/10.1186/s43593-024-00076-4)

Conventional multiphoton microscopy, which is fundamental for deep-tissue imaging, faces significant challenges related to imaging depth and field of view, particularly in highly scattering biological tissues such as the brain. To enhance imaging depth while preventing thermal damage, the field of view often diminishes exponentially, complicating the observation of extensive neuronal networks. Now, a groundbreaking microscope has been developed to overcome these limitations by incorporating a range of innovative techniques, enabling researchers to visualize vast areas of the brain at unmatched depths.

A research team at Cornell University (Ithaca, NY, USA) has introduced an advanced imaging technology that offers exceptional deep and wide-field visualization of brain activity at single-cell resolution. This microscope, known as DEEPscope, merges two-photon and three-photon microscopy techniques to capture expansive neural activity and structural details that were previously difficult to access. A key aspect of this advancement is DEEPscope’s adaptive excitation system along with its multi-focus polygon scanning scheme, which facilitates efficient fluorescence generation for large field-of-view imaging. These features enable high-resolution imaging over a 3.23 x 3.23-mm² area with sufficient speed to record neuronal activity in the deepest layers of mouse cortical tissue. Additionally, the capacity for simultaneous two-photon and three-photon imaging increases the system's versatility, enabling detailed investigations of both superficial and deeper brain regions.

In a study published in the journal eLight, the researchers demonstrated DEEPscope’s ability to image entire cortical columns and subcortical structures with single-cell resolution. They successfully recorded neuronal activity in deep brain regions of transgenic mice, observing more than 4,500 neurons across both shallow and deep cortical layers. Furthermore, DEEPscope facilitated whole-brain imaging in adult zebrafish, capturing structural details at depths exceeding 1 mm and across a field greater than 3 mm—an achievement unprecedented in neuroscience. The techniques demonstrated can be seamlessly integrated into existing multiphoton microscopes, making them accessible for broad applications in neuroscience and other disciplines that require deep-tissue imaging. By addressing previous constraints, DEEPscope establishes a new benchmark for large-field, high-resolution, deep imaging of living tissues, with the potential to enhance understanding of the brain’s complex networks and their significance in health and disease.

“DEEPscope represents a significant advancement in brain imaging technology,” said Aaron Mok, the study's lead author. “For the first time, we can visualize complex neural circuits in living animals at such a large scale and depth, providing insights into brain function and potentially opening new avenues for neurological research.”

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
HbA1c Test
HbA1c Rapid Test
New
Creatine Kinase-MB Assay
CK-MB Test

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.