We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Point-Of-Care Paper-Based Test Could Diagnose Cancer at Bedside

By LabMedica International staff writers
Posted on 18 Oct 2024
Print article
Image: The rapid paper-based test could detect cancer cells in cerebrospinal fluid at the point-of-care (Photo courtesy of 123RF)
Image: The rapid paper-based test could detect cancer cells in cerebrospinal fluid at the point-of-care (Photo courtesy of 123RF)

When cancer metastasizes from its primary location, such as the lungs or breast, to the brain or spine, there are established treatment methods available. However, when these metastases reach the cerebrospinal fluid (CSF), resulting in a condition known as leptomeningeal disease (LMD), the median survival rate drops to approximately four months with treatment. If left untreated, median survival is only a matter of weeks. Alongside its low survivability, LMD is also challenging to detect promptly using current testing methods. Presently, it can take several weeks for doctors to confirm whether the cancer has spread to the CSF, followed by additional weeks to ascertain if a treatment has been effective. Given the urgency for patients facing one of cancer's most severe complications, researchers are now striving to develop a new test that can identify the spread of cancer to the central nervous system on the same day as the patient’s visit.

A two-year study being conducted by researchers at UCLA Health (Los Angeles, CA, USA) aims to create a new test that would facilitate same-day detection of LMD and allow doctors to monitor the effectiveness of treatments like chemotherapy in real-time. The research team is working on a diagnostic kit that combines sample processing with a specialized paper-assay test, akin to those utilized in at-home COVID and pregnancy tests. Their objective is to enable doctors to draw CSF from the patient and, after processing, apply it to the paper test at the care site. Ideally, the test would not only confirm the presence of cancer cells in the CSF that same day but also provide doctors with a measure of the concentration of those cancer cells.

Current testing methods require that CSF be sent to a lab for processing, which can take one to two weeks for results. Moreover, the initial test typically has a detection rate of only 50%, necessitating additional tests to improve accuracy. Another limitation of these tests is their inability to accurately measure disease burden, which restricts their usefulness in evaluating treatment efficacy. The new test would enable real-time monitoring of circulating tumor cells, allowing doctors to quickly assess whether the treatment is effective. This would enable physicians to continue or adjust the treatment plan based on changes in cancer cell concentration. Obtaining this information promptly is vital given the poor survival rates associated with LMD. Additionally, the test could reduce costs associated with testing for LMD since it is paper-based and does not require laboratory processing. The study, which involves developing two types of diagnostics and testing with purchased cancer cells as well as some patient samples, is currently underway, with initial results anticipated in 2026.

“If the technologies work with cancer cells, then we'll start testing with cerebrospinal fluid samples from patients,” said Dr. Won Kim, Neurosurgical Director of the Brain Metastasis Program and co-investigator of the study. “If we're able to validate this in our human patients for the initial testing phase, we would like to move towards a multicenter clinical trial."

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test
New
POC Procalcitonin Test
B·R·A·H·M·S PCT-Q Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.