We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Exhaled-Breath Test Shows Promise for Detection of Lung Cancer

By LabMedica International staff writers
Posted on 19 Jul 2024
Print article
Image: The EV-CATCHER assay (Photo courtesy of Journal of Extracellular Vesicles; doi.org/10.1002/jev2.12110)
Image: The EV-CATCHER assay (Photo courtesy of Journal of Extracellular Vesicles; doi.org/10.1002/jev2.12110)

Researchers are advancing the development of an exhaled-breath test to detect lung diseases, including lung cancer. Two pivotal studies published in the Journal of Extracellular Vesicles detail their success in isolating and analyzing lung biomarkers from human breath and utilizing animal models to further explore and possibly identify crucial markers for the early and non-invasive detection of metastatic lung tumors. While substantial efforts are needed to identify a spectrum of biomarkers and validate their clinical relevance for human patients, these publications provide a scientific framework for continued research.

The research by scientists at Hackensack Meridian Health (Edison, NJ, USA) focuses on capturing and characterizing extracellular vesicles (EVs), nanoparticles released by cells into fluids like blood and serum. Cancer cells release these particles abundantly, making them prime targets for early disease detection. The researchers have initiated biomarker discovery projects for several cancers, including lung, prostate, cervical, and bladder cancers, using liquid biopsies. They have developed a technology called EV-CATCHER that selectively isolates these nanoparticles from biofluids and employs next-generation sequencing to examine small-RNAs within the nanoparticles for non-invasive detection of lesions and tumors that could be developing within the body. The team is now applying the EV-CATCHER technology to isolate EVs from human exhaled breath, which carries biomarkers of lung disease, potentially transforming the diagnosis and monitoring of lung conditions without invasive lung sampling.

In their most recent study, they analyzed airway samples from 69 individuals, demonstrating that microRNA profiles in exhaled EVs matched those from deeper lung samples obtained through more invasive methods like bronchoalveolar lavages. In another pivotal study aimed at detecting lung cancer, they analyzed microRNA content in exhaled EVs collected from breath condensates of 18 individuals—12 healthy and six with stage-IV lung cancer. Their findings revealed distinct microRNA expression profiles in exhaled EVs that could differentiate between individuals with and without lung cancer. An earlier study with mouse models, published in March in the journal Extracellular Vesicles and Circulating Nucleic Acids, demonstrated the ability to detect microRNAs from human-derived tumor cells in exhaled breath within 1-2 weeks of injecting human cancer cells, using EV-CATCHER to capture tumor EVs from exhaled breath. Although further refinement of biomarker selection is necessary, the research indicates promising potential for diagnosing lung diseases, notably lung cancer, using this innovative approach.

“We envision that expanding our approach to study human primary and other secondary lung cancers, in adequately-powered animal studies, has the potential to identify relevant exhaled human EV biomarkers,” they wrote. “Furthermore, since EV-CATCHER can easily be customized to target surface markers of specific EV subpopulations, we foresee that using it to separate lung tumor cell-derived exhaled EVs from immune and innate cell-derived EVs may help further improve the selection of exhaled tumor EVs for the fine-tuned detection of different types of lung cancer.”

Related Links:
Hackensack Meridian Health

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Automated Blood Typing System
IH-500 NEXT
New
Hepatitis B Virus Test
HBs Ab – ELISA
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Rapid and non-invasive analysis of paracetamol overdose using paper arrow-mass spectrometry (Photo courtesy of Dr Simon Maher/University of Liverpool)

New Saliva Test Rapidly Identifies Paracetamol Overdose

Paracetamol is the most widely used medication worldwide, and its easy availability contributes to its frequent misuse and overdose. Overdosing on paracetamol can lead to liver toxicity, requiring hospitalization.... Read more

Hematology

view channel
Image: RHD screening just got easier with single exon NIPT testing (Photo courtesy of Devyser)

Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma

RhD (rhesus D) is a blood group type that can trigger immune responses. Individuals who lack RhD on their red blood cells are classified as RhD-negative. These individuals may produce antibodies against... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: A new test finds bacteria in liquids and indicate their presence by changing color (Photo courtesy of Georgia Kirkos/McMaster University)

New Hands-Free Rapid Test Detects Bacteria in Fluids

Bacteriophages, the most abundant form of life on Earth, are specialized to target and destroy specific types of bacteria. Their natural ability to fight bacteria has long been harnessed to treat infections.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.