We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App

Advanced Liquid Biopsy Technology Detects Cancer Earlier Than Conventional Methods

By LabMedica International staff writers
Posted on 17 Jun 2024
Print article
Image: The new tests seek to detect mutant DNA in blood samples, indicating the presence of cancer cells (Photo courtesy of Christian Stolte/Weill Cornell)
Image: The new tests seek to detect mutant DNA in blood samples, indicating the presence of cancer cells (Photo courtesy of Christian Stolte/Weill Cornell)

Liquid biopsy technology has yet to fully deliver on its significant potential. Traditional methods have focused on a narrow range of cancer-associated mutations that are often present in such low quantities in the blood that they escape detection, leading to undetected cancer recurrences. Now, an artificial intelligence (AI)-powered technique for detecting tumor DNA in the bloodstream has demonstrated remarkable sensitivity in predicting cancer recurrence, promising to enhance cancer management through early detection of recurrences and close monitoring of tumor response during treatment.

Several years back, researchers at Weill Cornell Medicine (New York, NY, USA) pioneered a method that employs whole-genome sequencing of DNA from blood samples. This approach has proven to capture a greater "signal," facilitating a more sensitive and simpler means of detecting tumor DNA. This methodology has gained traction among liquid biopsy developers. In their latest research, the team employed a machine learning model, a form of AI, to identify circulating tumor DNA (ctDNA) using sequencing data from patient blood samples, achieving high levels of sensitivity and accuracy. They successfully applied this technology in patients with lung cancer, melanoma, breast cancer, colorectal cancer, and precancerous colorectal polyps.

In their latest study, which was published on June 14 in Nature Medicine, the researchers utilized an advanced machine learning strategy (similar to that used in ChatGPT and other popular AI tools) to detect subtle patterns in the sequencing data, particularly distinguishing cancerous patterns from sequencing errors and other "noise." In one instance, they trained their system, named MRD-EDGE, to identify specific tumor mutations in 15 colorectal cancer patients. Post-surgery and chemotherapy, the team used MRD-EDGE to analyze blood data to predict residual cancer in nine patients. Months later, using less sensitive techniques, five of these nine patients were confirmed to have experienced a recurrence of cancer. Notably, there were no false negatives; patients identified by MRD-EDGE as tumor DNA-free did not experience recurrences during the study period.

MRD-EDGE also demonstrated comparable sensitivity in studies involving patients with early-stage lung cancer and triple-negative breast cancer, accurately detecting nearly all recurrences and effectively monitoring tumor status throughout treatment. The system proved capable of detecting mutant DNA from precancerous colorectal adenomas, which are the polyps that can develop into colorectal tumors. Furthermore, the researchers found that MRD-EDGE could track responses to immunotherapy in melanoma and lung cancer patients, identifying changes weeks before they could be detected by traditional X-ray-based imaging, even without prior training on sequencing data from patients' tumors.

“We were able to achieve a remarkable signal-to-noise enhancement, and this enabled us, for example, to detect cancer recurrence months or even years before standard clinical methods did so,” said Dr. Dan Landau, a professor of medicine in the division of hematology and medical oncology at Weill Cornell Medicine. “On the whole, MRD-EDGE addresses a big need, and we’re excited about its potential and working with industry partners to try to deliver it to patients.”

Related Links:
Weill Cornell Medicine
New York Genome Center

Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
POCT Fluorescent Immunoassay Analyzer
Gold Member
Dengue Virus Test

Print article


Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more


view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more


view channel
Image: The Simplexa C. auris direct kit is a real-time polymerase chain reaction assay run on the LIAISON MDX instrument (Photo courtesy of Diasorin)

Novel Molecular Test to Help Prevent and Control Multi Drug-Resistant Fungal Pathogen in Healthcare Settings

Candida auris (C. auris) is a rapidly emerging multi drug-resistant fungal pathogen that is commonly found in healthcare environments, where it presents a challenge due to its ability to asymptomatically... Read more


view channel
Image: The tool can improve precision oncology by accurately predicting molecular subtypes and therapy responses (Photo courtesy of Shutterstock)

Computational Tool Integrates Transcriptomic Data for Improved Breast Cancer Diagnosis and Treatment

Breast cancer is the most commonly diagnosed cancer globally, presenting in various subtypes that require precise identification for effective, personalized treatment. Traditionally, cancer subtyping has... Read more


view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.