We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Advanced Liquid Biopsy Technology Detects Cancer Earlier Than Conventional Methods

By LabMedica International staff writers
Posted on 17 Jun 2024
Print article
Image: The new tests seek to detect mutant DNA in blood samples, indicating the presence of cancer cells (Photo courtesy of Christian Stolte/Weill Cornell)
Image: The new tests seek to detect mutant DNA in blood samples, indicating the presence of cancer cells (Photo courtesy of Christian Stolte/Weill Cornell)

Liquid biopsy technology has yet to fully deliver on its significant potential. Traditional methods have focused on a narrow range of cancer-associated mutations that are often present in such low quantities in the blood that they escape detection, leading to undetected cancer recurrences. Now, an artificial intelligence (AI)-powered technique for detecting tumor DNA in the bloodstream has demonstrated remarkable sensitivity in predicting cancer recurrence, promising to enhance cancer management through early detection of recurrences and close monitoring of tumor response during treatment.

Several years back, researchers at Weill Cornell Medicine (New York, NY, USA) pioneered a method that employs whole-genome sequencing of DNA from blood samples. This approach has proven to capture a greater "signal," facilitating a more sensitive and simpler means of detecting tumor DNA. This methodology has gained traction among liquid biopsy developers. In their latest research, the team employed a machine learning model, a form of AI, to identify circulating tumor DNA (ctDNA) using sequencing data from patient blood samples, achieving high levels of sensitivity and accuracy. They successfully applied this technology in patients with lung cancer, melanoma, breast cancer, colorectal cancer, and precancerous colorectal polyps.

In their latest study, which was published on June 14 in Nature Medicine, the researchers utilized an advanced machine learning strategy (similar to that used in ChatGPT and other popular AI tools) to detect subtle patterns in the sequencing data, particularly distinguishing cancerous patterns from sequencing errors and other "noise." In one instance, they trained their system, named MRD-EDGE, to identify specific tumor mutations in 15 colorectal cancer patients. Post-surgery and chemotherapy, the team used MRD-EDGE to analyze blood data to predict residual cancer in nine patients. Months later, using less sensitive techniques, five of these nine patients were confirmed to have experienced a recurrence of cancer. Notably, there were no false negatives; patients identified by MRD-EDGE as tumor DNA-free did not experience recurrences during the study period.

MRD-EDGE also demonstrated comparable sensitivity in studies involving patients with early-stage lung cancer and triple-negative breast cancer, accurately detecting nearly all recurrences and effectively monitoring tumor status throughout treatment. The system proved capable of detecting mutant DNA from precancerous colorectal adenomas, which are the polyps that can develop into colorectal tumors. Furthermore, the researchers found that MRD-EDGE could track responses to immunotherapy in melanoma and lung cancer patients, identifying changes weeks before they could be detected by traditional X-ray-based imaging, even without prior training on sequencing data from patients' tumors.

“We were able to achieve a remarkable signal-to-noise enhancement, and this enabled us, for example, to detect cancer recurrence months or even years before standard clinical methods did so,” said Dr. Dan Landau, a professor of medicine in the division of hematology and medical oncology at Weill Cornell Medicine. “On the whole, MRD-EDGE addresses a big need, and we’re excited about its potential and working with industry partners to try to deliver it to patients.”

Related Links:
Weill Cornell Medicine
New York Genome Center

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
H-FABP Assay
Heart-Type Fatty Acid-Binding Protein Assay
New
C-Reactive Protein Assay
OneStep C-Reactive Protein (CRP) RapiCard InstaTest

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.